Ashyralyev, A.; Sobolevskii, P. E. A note on the difference schemes for hyperbolic equations. (English) Zbl 1007.65064 Abstr. Appl. Anal. 6, No. 2, 63-70 (2001). The authors present some methods discrete in time for the hyperbolic equation \(d^2 u(t)/dt^2+ Au(t)= f(t)\), \(u(0)= \phi\), \(u'(0)= \psi\) in Hilbert space and find stability estimates. Reviewer: J.D.P.Donnelly (Oxford) Cited in 30 Documents MSC: 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35L15 Initial value problems for second-order hyperbolic equations 34G10 Linear differential equations in abstract spaces 65J10 Numerical solutions to equations with linear operators Keywords:difference scheme; stability estimates; hyperbolic equation; Hilbert space PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{P. E. Sobolevskii}, Abstr. Appl. Anal. 6, No. 2, 63--70 (2001; Zbl 1007.65064) Full Text: DOI EuDML OpenURL