×

Recent results on extensions of Sturmian words. (English) Zbl 1007.68141

Summary: Sturmian words are infinite words over a two-letter alphabet that admit a great number of equivalent definitions. Most of them have been given in the past ten years. Among several extensions of Sturmian words to larger alphabets, the Arnoux-Rauzy words appear to share many of the properties of Sturmian words. In this survey, combinatorial properties of these two families are considered and compared.

MSC:

68R15 Combinatorics on words
11B85 Automata sequences
37B10 Symbolic dynamics
68Q45 Formal languages and automata

Keywords:

Sturmian words
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnoux P., Bull. Belg. Math. Soc. Simon Sterin 8 pp 181– (2001)
[2] Arnoux P., Bull. Soc. Math. France 119 pp 199– (1991)
[3] Berstel J., World Scientific pp 13– (1996)
[4] DOI: 10.1016/0304-3975(95)00224-3 · Zbl 0872.11018
[5] DOI: 10.1090/S0894-0347-01-00378-2 · Zbl 1057.49007
[6] DOI: 10.1016/0166-218X(92)90274-E · Zbl 0683.20045
[7] DOI: 10.4153/CMB-1993-003-6 · Zbl 0804.11021
[8] DOI: 10.1017/S0305004100072236 · Zbl 0823.58012
[9] DOI: 10.5802/aif.1792 · Zbl 1004.37008
[10] DOI: 10.1016/S0304-3975(98)00251-5 · Zbl 0916.68114
[11] DOI: 10.1007/BF01780584 · Zbl 0299.54032
[12] DOI: 10.1007/BF01762232 · Zbl 0256.54028
[13] DOI: 10.5802/jtnb.83 · Zbl 0786.11041
[14] DOI: 10.1016/S0304-3975(96)00310-6 · Zbl 0911.68098
[15] DOI: 10.1016/0304-3975(94)00035-H · Zbl 0874.68245
[16] DOI: 10.1016/0020-0190(88)90214-1 · Zbl 0746.68067
[17] A, Theoret. Comput. Sci. 63 pp 335– (1989)
[18] DOI: 10.1016/S0304-3975(99)00320-5 · Zbl 0981.68126
[19] DOI: 10.1016/S0304-3975(97)00188-6 · Zbl 0930.68116
[20] DOI: 10.1016/S0012-365X(97)00029-0 · Zbl 0895.68087
[21] Ferenczi S., Bull. Soc. Math. France 123 pp 271– (1995)
[22] DOI: 10.1090/S0002-9939-1965-0174934-9
[23] Holton C., Bull. Soc. Math. France 126 pp 149– (1998) · Zbl 0931.11004
[24] DOI: 10.1007/BF03167147 · Zbl 0734.28010
[25] DOI: 10.1051/ita:2000122 · Zbl 0987.68056
[26] Justin J., Theoret. Inf. Appl. 31 pp 271– (1997)
[27] DOI: 10.1051/ita:2000121 · Zbl 0987.68055
[28] DOI: 10.5802/jtnb.223 · Zbl 0918.11048
[29] DOI: 10.2307/2371431 · Zbl 0022.34003
[30] DOI: 10.5802/jtnb.207 · Zbl 0904.11008
[31] Rauzy G., Exposé No 25 pp 1–
[32] DOI: 10.1007/3-540-15641-0_32
[33] Risley R., Acta Arith. 95 pp 167– (2000)
[34] DOI: 10.1016/S0019-3577(99)80010-X · Zbl 1027.11018
[35] DOI: 10.1006/eujc.2000.0444 · Zbl 0968.68124
[36] DOI: 10.4064/aa96-3-6 · Zbl 0973.11030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.