×

zbMATH — the first resource for mathematics

On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. (English) Zbl 1007.74035
Summary: For the analysis of flows in compliant vessels, we propose an approach to couple the original three-dimensional equations with a convenient one-dimensional model. This multi-scale strategy allows for a dramatic reduction of computational complexity, and is suitable for “absorbing” outgoing pressure waves. In particular, it is of interest for the description of blood motion in the arterial system.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ciarlet, P.G., Introduction to linear shell theory, (1998), Gauthier-Villars Paris · Zbl 0912.73001
[2] G.R. Cokelet, The rheology and tube flow of blood, in: R. Skalak, S. Chen (Eds.), Handbook of Bioengineering, McGraw-Hill, New York, 1987
[3] Engquist, B.; Majda, A., Numerical radiation boundary conditions for unsteady transonic flow, J. comput. phys., 40, 1, 91-103, (1981) · Zbl 0467.76056
[4] L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier-Stokes equation, INRIA Research Report No. 4093, January 2001 · Zbl 1020.35070
[5] Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A., Multiscale modelling of the circolatory system: a preliminary analysis, Comp. vis. science, 2, 75-83, (1999) · Zbl 1067.76624
[6] Giles, M.B., Non-reflecting boundary conditions for Euler equation calculations, Aiaa j., 28, 12, 2050-2058, (1990)
[7] Givoli, D., Non-reflecting boundary conditions, J. comput. phys., 94, 1-29, (1991) · Zbl 0731.65109
[8] E. Godlewski, P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer, New York, 1996 · Zbl 0860.65075
[9] Hayashi, K.; Handa, K.; Nagasawa, S.; Okumura, A., Stiffness and elastic behaviour of human intracranial and extracranial arteries, J. biomech., 13, 175-184, (1980)
[10] Heywood, J.G.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible navier – stokes equations, Int. J. numer. methods fluids, 22, 325-352, (1996) · Zbl 0863.76016
[11] Hughes, T.J., The finite element method, linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[12] Langewouters, G.L.; Wesseling, K.H.; Goedhard, W.J.A., The elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model, J. biomech., 17, 425-435, (1984)
[13] D.A. McDonald, Blood Flow in Arteries, third ed. edited by W.W. Nichols, M.F. O’Rourke, Edward Arnold, London, 1990
[14] Mittal, S.; Tezduyar, T.E., Parallel finite element simulation of 3D incompressible flows: fluid – structure interactions, Int. J. numer. methods fluids, 21, 933-953, (1995) · Zbl 0873.76047
[15] F. Nobile, Fluid – structure interaction problems in hemodynamics, Master’s Thesis, Technical University of Milan, 1998 (in Italian)
[16] Perktold, K.; Resch, M.; Florian, H., Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model, ASME J. biomech. engrg., 113, 463-475, (1991)
[17] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comp. vis. science, 2, 163-197, (2000) · Zbl 1096.76042
[18] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23, Springer, Berlin, 1994 · Zbl 0803.65088
[19] Reismann, H., Elastic plates: theory and application, (1988), Wiley New York · Zbl 0761.73002
[20] Simo, J.C.; Fox, D.D., On a stress resultant geometrically exact shell model, part I: formulation and optimal parametrization, Comput. methods appl. mech. engrg., 72, 267-304, (1989) · Zbl 0692.73062
[21] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model, part II: the linear theory; computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138
[22] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model, part III: computational aspects of the nonlinear theory, Comput. methods appl. mech. engrg., 79, 21-70, (1989) · Zbl 0746.73015
[23] Tijsseling, A.S., Fluid – structure interaction in liquid filled pipe systems: a review, J. fluids struct., 10, 109-146, (1996)
[24] Tozeren, A., Elastic properties of arteries and their influence on the cardiovascular system, ASME J. biomech. engrg., 106, 182-185, (1984)
[25] A. Veneziani, Mathematical and numerical modelling of blood flow problems, Ph.D. Thesis, University of Milan, 1998 · Zbl 1075.76699
[26] Xu, X.Y.; Collins, M.W.; Jones, C.J.H., Flow studies in canine aortas, ASME J. biomech. engrg., 114, 11, 504-511, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.