zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coulomb functions for attractive and repulsive potentials and for positive and negative energies. (English) Zbl 1007.81020
Summary: The paper gives a review of the mathematical properties of the Coulomb radial wave functions, for attractive and repulsive potentials and for positive and negative energies, together with recommendations on best methods for their computation. It includes discussions of analytic continuations (complex energies, radial co-ordinates and angular momenta) and of relativistic Coulomb functions.
MSC:
81Q05Closed and approximate solutions to quantum-mechanical equations
81-08Computational methods (quantum theory)
Software:
COULFG; NUMER; FGH
WorldCat.org
Full Text: DOI
References:
[1] Hull, M. H.; Breit, G.: S.flügge encyclopedia of physics. Encyclopedia of physics 41, 408-465 (1959)
[2] Curtis, A. R.: Roy. soc. Math. tables. 11 (1964)
[3] Abramowitz, M.: M.a.abramowitzi.a.stegun handbook of mathematical functions. Handbook of mathematical functions (1964) · Zbl 0171.38503
[4] Seaton, M. J.: Rep. prog. Phys.. 46, 167 (1983)
[5] Ham, F. S.: Solid st. Phys.. 1, 217 (1955)
[6] Seaton, M. J.: Monthly notices roy. Astronom. soc.. 118, 501 (1958)
[7] Greene, C. H.; Fano, U.; Strinati, G.: Phys. rev. A. 19, 1979 (1485)
[8] Whittaker, E. T.; Watson, G. N.: Modern analysis. (1946) · Zbl 0108.26903
[9] Bucholz, H.: Die konfluentte hypergeometrische funktion, Berlin. (1953)
[10] Slater, L. J.: Confluent hypergeometric functions. (1960) · Zbl 0086.27502
[11] Seaton, M. J.: Comput. phys. Comm.. 25, 87 (1982)
[12] Yost, F. L.; Wheeler, J. A.; Breit, G.: Phys. rev.. 39, 174 (1936)
[13] Kuhn, T. S.: Quart. appl. Math.. 9, 1-16 (1951)
[14] Ham, F. S.: Quart. appl. Math.. 15, 31-39 (1957)
[15] Humblet, J.: Ann. phys.. 155, 461-493 (1984)
[16] Dirac, P. A. M.: Quantum theory. (1947) · Zbl 0030.04801
[17] Mott, N. F.; Massey, H. S. W.: Theory of atomic collisions. (1956) · Zbl 0039.22401
[18] Johnson, W. R.; Cheng, K. T.: J. phys. B. 12, 863 (1979)
[19] Seaton, M. J.; Peach, G.: Proc. phys. Soc. A. 79, 1962 (1296)
[20] Burgess, A.: Proc. phys. Soc.. 81, 442 (1963)
[21] Seaton, M. J.: Comput. phys. Comm.. 32, 115 (1984)
[22] Seaton, M. J.: Comput. phys. Comm.. 146, 250 (2002)
[23] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical recipes in Fortran. (1992) · Zbl 0778.65002
[24] Seaton, M. J.: Comput. phys. Comm.. 146, 254 (2002)
[25] Barnett, A. R.; Feng, D. H.; Steed, J. W.; Goldfarb, L. J. B.: Comput. phys. Comm.. 8, 377 (1974)
[26] Barnett, A. R.: Comput. phys. Comm.. 21, 297 (1981)
[27] Barnett, A. R.: J. comput. Phys.. 46, 171 (1982)
[28] Barnett, A. R.: Comput. phys. Comm.. 24, 141 (1981)
[29] Barnett, A. R.: Comput. phys. Comm.. 27, 147 (1982)
[30] Goldfarb, L. J. B.; Steed, J. W.: Nucl. phys. A. 116, 321 (1968)
[31] Thompson, I. J.; Barnett, A. R.: Comput. phys. Comm.. 36, 363 (1985)
[32] Thompson, I. J.; Barnett, A. R.: J. comput. Phys.. 64, 490 (1986)
[33] Noble, C. J.; Thompson, I. J.: Comput. phys. Comm.. 33, 413 (1984)