×

A new Liapunov function for the simple chemostat. (English) Zbl 1007.92034

From the introduction: The simple chemostat constitutes one of the most basic biochemical interactions, namely that of a consumer growing on a single limiting resource. The chemostat serves as a basic building block which underpins many multi-component population interaction models, and it also epitomizes an unfortunately rare situation where the mathematical model is completely validated by laboratory experimental data. Although the mathematical theory of the simple chemostat is well understood, related research on extensions and variations including multi-component population interactions continues to be an ongoing and active area of research, with many open questions.
We give what we think is a new Lyapunov function for the simple chemostat. This Lyapunov function directly verifies global asymptotic stability of the positive equilibrium of the simple chemostat whenever it exists. Global asymptotic stability of the simple chemostat is well known of course, and can be established in other ways, including an approach which uses another Lyapunov function, due to S.B. Hsu [SIAM J. Appl. Math. 34, 760-763 (1978; Zbl 0381.92014)]. Hsu’s Lyapunov function is only negative semi-definite along trajectories relative to the equilibrium. Thus the La Salle invariance principle must be applied to obtain the global asymptotic stability.
The function given in this note is sharper – its derivative along trajectories is negative definite relative to the equilibrium – and so no recourse to La Salle’s principle is needed. Although this does not seem to immediately lead to any new results about the simple chemostat, it provides another tool for the investigation of related models.

MSC:

92D40 Ecology
34D20 Stability of solutions to ordinary differential equations

Citations:

Zbl 0381.92014
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ballyk, M.; Dung, Le; Jones, D.; Smith, H. L., Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59, 2, 573-596 (1998) · Zbl 1051.92039
[2] Ballyk, M.; Smith, H. L., A model of microbial growth in a plug flow reactor with wall attachment, Math. Biosci., 158, 95-126 (1999) · Zbl 0980.92034
[3] Baxley, J. V.; Robinson, S. B., Coexistence in the unstirred chemostat. Differential equations and computational simulations, II. (Mississippi State, MS, 1995), Appl. Math. Comput., 89, 1-3, 41-65 (1998) · Zbl 0910.35068
[4] Beretta, E.; Kuang, Y., Global stability in a well known delayed chemostat model, Commun. Appl. Anal., 4, 2, 147-155 (2000) · Zbl 1089.34546
[5] Boer, M. P.; Kooi, B. W.; Kooijman, S. A.L. M., Food chain dynamics in the chemostat, Math. Biosci., 150, 1, 43-62 (1998) · Zbl 0938.92029
[6] Dung, L.; Smith, H. L.; Waltman, P., Growth in the unstirred chemostat with different diffusion rates, Fields Inst. Commun., 21, 131-142 (1999) · Zbl 0920.35076
[7] Ellermeyer, S. F., Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth, SIAM J. Appl. Math., 54, 2, 456-465 (1994) · Zbl 0794.92023
[8] Ellermeyer, S. F.; Pilyugin, S. S.; Redheffer, R., Persistence criteria for a chemostat with variable nutrient input, J. Differential Equations, 171, 132-147 (2001) · Zbl 0983.34039
[9] Guo, S.; Ma, Z.; Fergola, P.; Tenneriello, C., The threshold of population survival in a polluted chemostat model, Math. Comput. Modelling, 28, 9, 117-127 (1998) · Zbl 1069.92520
[10] He, X.-Z.; Ruan, S., Global stability in chemostat-type plankton models with delayed nutrient recycling, J. Math. Biol., 37, 3, 253-271 (1998) · Zbl 0935.92034
[11] He, X.-Z.; Ruan, S.; Xia, H., Global stability in chemostat-type equations with distributed delays, SIAM J. Math. Anal., 29, 3, 681-696 (1998) · Zbl 0916.34064
[12] Hsu, S. B., Limiting behavior for competing species, SIAM J. Appl. Math., 34, 760-763 (1978) · Zbl 0381.92014
[13] Hsu, S. B.; Luo, T.-K.; Waltman, P., Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 34, 2, 225-238 (1995) · Zbl 0835.92028
[14] Hsu, S. B.; Waltman, P., Competition in the chemostat when one competitor produces a toxin, Japan J. Ind. Appl. Math., 15, 3, 471-490 (1998) · Zbl 0982.92035
[15] Jiang, L.; Ma, Z., Stability of a chemostat model for a single species with delayed nutrient recycling—case of weak kernel function, Chinese Quart. J. Math., 13, 1, 64-69 (1998) · Zbl 0923.92027
[16] J. Kato, J. Pan, Stability domain of a chemostat system with delay. Differential equations with applications to biology (Halifax, NS, 1997), Fields Inst. Commun., Vol. 21, Amer. Math. Soc., Providence, RI, 1999, pp. 307-315.; J. Kato, J. Pan, Stability domain of a chemostat system with delay. Differential equations with applications to biology (Halifax, NS, 1997), Fields Inst. Commun., Vol. 21, Amer. Math. Soc., Providence, RI, 1999, pp. 307-315. · Zbl 0919.92038
[17] La Salle, J.; Lefschetz, S., Stability by Liapunov’s Direct Method with Applications (1961), Academic Press: Academic Press New York · Zbl 0098.06102
[18] Lenas, P.; Thomopoulos, N. A.; Vayenas, D. V.; Pavlou, S., Oscillations of two competing microbial populations in configurations of two interconnected chemostats, Math. Biosci., 148, 1, 43-63 (1998) · Zbl 0909.92031
[19] Li, B., Global asymptotic behavior of the chemostat: general response functions and different removal rates, SIAM J. Appl. Math., 59, 2, 411-422 (1999) · Zbl 0916.92025
[20] Li, B.; Kuang, Y., Simple food chain in a chemostat with distinct removal rates, J. Math. Anal. Appl., 242, 1, 75-92 (2000) · Zbl 0943.92034
[21] Li, B.; Kuang, Y.; Smith, H. L., Competition between plasmid-bearing and plasmid-free microorganisms in a chemostat with distinct removal rates, Canad. Appl. Math. Quart., 7, 3, 251-281 (1999) · Zbl 0977.92030
[22] Lu, Z.; Hadeler, K. P., Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci., 148, 2, 147-159 (1998) · Zbl 0930.92029
[23] Lu, Z.; Zhang, P.; Hadeler, K. P., Global stability of competition models in the chemostat, Bull. Biomath., 1, 3, 8-15 (1997) · Zbl 0918.92024
[24] Ma, Z.; Guo, S.; Fergola, P.; Tenneriello, C., Effects of toxicants on chemostat model with time variable nutrient input and washout, Systems Sci. Math. Sci., 11, 4, 342-350 (1998) · Zbl 0965.92031
[25] Pan, J., Parameter analysis of a chemostat equation with delay, Funkcial. Ekvac., 41, 3, 347-361 (1998) · Zbl 1140.34443
[26] Pilyugin, S.; Waltman, P., Competition in the unstirred chemostat with periodic input and washout, SIAM J. Appl. Math., 59, 4, 1157-1177 (1999) · Zbl 0991.92035
[27] Pilyugin, S.; Waltman, P., The simple chemostat with wall growth, SIAM J. Appl. Math., 59, 5, 1552-1572 (1999) · Zbl 0934.34042
[28] Ruan, S.; He, X.-Z., Global stability in chemostat-type competition models with nutrient recycling, SIAM J. Appl. Math., 58, 1, 170-192 (1998) · Zbl 0912.34062
[29] Ruan, S.; Wolkowicz, G. S.K., Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204, 3, 786-812 (1996) · Zbl 0879.92031
[30] Smith, H. L., A discrete, size-structured model of microbial growth and competition in the chemostat, J. Math. Biol., 34, 7, 734-754 (1996) · Zbl 0884.92029
[31] Smith, H. L., The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35, 5, 545-556 (1997) · Zbl 0878.92032
[32] Smith, H. L.; Waltman, P., The Theory of the Chemostat: Dynamics of Microbial Competition (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0860.92031
[33] Smith, H. L.; Zhao, X.-Q., Dynamics of a periodically pulsed bio-reactor model, J. Differential Equations, 155, 368-404 (1999) · Zbl 0930.35085
[34] Tang, B.; Sitomer, A.; Jackson, T., Population dynamics and competition in chemostat models with adaptive nutrient uptake, J. Math. Biol., 35, 4, 453-479 (1997) · Zbl 0866.92019
[35] Thomopoulos, N. A.; Vayenas, D. V.; Pavlou, S., On the coexistence of three microbial populations competing for two complementary substrates in configurations of interconnected chemostats, Math. Biosci., 154, 2, 87-102 (1998) · Zbl 0930.92030
[36] Wang, W.; Ma, Z., Convergence in the chemostat model with delayed response in growth, Systems Sci. Math. Sci., 12, 1, 23-32 (1999) · Zbl 0966.92030
[37] Wolkowicz, G. S.K.; Lu, Z., Direct interference on competition in a chemostat, J. Biomath., 13, 3, 282-291 (1998) · Zbl 0982.92036
[38] Wolkowicz, G. S.K.; Xia, H., Global asymptotic behavior of a chemostat model with discrete delays, SIAM J. Appl. Math., 57, 4, 1019-1043 (1997) · Zbl 0902.92023
[39] Wolkowicz, G. S.K.; Xia, H.; Ruan, S., Competition in the chemostat: a distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57, 5, 1281-1310 (1997) · Zbl 0893.34067
[40] Wolkowicz, G. S.K.; Xia, H.; Wu, J., Global dynamics of a chemostat competition model with distributed delay, J. Math. Biol., 38, 4, 285-316 (1999) · Zbl 0967.92021
[41] Wolkowicz, G. S.K.; Zhao, X.-Q., N-species competition in a periodic chemostat, Differential Integral Equations, 11, 3, 465-491 (1998) · Zbl 1005.92027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.