zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of fractional delay systems of retarded and neutral type. (English) Zbl 1007.93065
The authors study fractional systems with scalar transfer function given by $$ P(s)=\frac{\sum_{i=1}^{n_2} q_i(s) e^{-\beta_i s}}{\sum_{i=1}^{n_1} p_i(s) e^{-\gamma_i s}},$$ where $0=\gamma_0<\gamma_1<\cdots <\gamma_{n_1}$, $0=\beta_0<\beta_1<\cdots <\beta_{n_2}$, the $p_i$ being polynomials of the form $\sum a_ks^{\alpha_k}$ with $\alpha_k\in\Bbb R_+$ and the $q_i$ being polynomials of the form $\sum b_ks^{\delta_k}$ with $\delta_k\in\Bbb R_+$. In order to analyse these systems, a frequency-domain approach is taken. The first main results provide a BIBO-stability analysis, which is in general quite difficult to perform since the impulse response of such a system cannot usually be written down explicitly, and the transfer function has a branch point on the imaginary axis. In particular, the BIBO stability of retarded and neutral fractional systems is related to the location of their poles. Further, sufficient conditions for nuclearity are given.

MSC:
93D25Input-output approaches to stability of control systems
93C23Systems governed by functional-differential equations
47B25Symmetric and selfadjoint operators (unbounded)
93C80Frequency-response methods
WorldCat.org
Full Text: DOI
References:
[1] Bellman, R.; Cooke, K. L.: Differential-difference equations. (1963) · Zbl 0105.06402
[2] Bonnet, C.; Partington, J. R.: Coprime factorizations and stability of fractional differential systems. Systems and control letters 41, 167-174 (2000) · Zbl 0985.93048
[3] Curtain, R. F. (1992). A synthesis of time and frequency domain methods for the control of infinite-dimensional systems: A system theoretic approach. In H.T. Banks (Ed.), Control and estimation in distributed parameter systems (pp. 171-224), Philadelphia, SIAM.
[4] Curtain, R. F.; Zwart, H. J.: An introduction to infinite dimensional linear systems theory. (1995) · Zbl 0839.93001
[5] Glover, K.; Curtain, R. F.; Partington, J. R.: Realization and approximation of linear infinite dimensional systems with error bounds. SIAM journal of control and optimization 26, 863-898 (1988) · Zbl 0654.93011
[6] Glover, K.; Lam, J.; Partington, J. R.: Rational approximation of a class of infinite-dimensional systems I: Singular values of Hankel operators. Mathematics of control signals and systems 3, 325-344 (1990) · Zbl 0727.41020
[7] Gripenberg, G.; Londen, S. O.; Staffans, O.: Volterra integral and functional equations. (1990) · Zbl 0695.45002
[8] Hille, E.; Phillips, R. S.: Functional analysis and semi-groups. (1957) · Zbl 0078.10004
[9] Hotzel, R.: Some stability conditions for fractional delay systems. Journal of mathematical systems, estimation, and control 8, No. 4, 1-19 (1998) · Zbl 0913.93068
[10] Loiseau, J.-J., &amp; Mounier, H. (1998). Stabilisation de l’équation de la chaleur commandée en flux. In systèmes différentiels fractionnaires, modèles, méthodes et applications, ESAIM proceedings, vol. 5 (pp. 131-144).
[11] Matignon, D. (1998). Stability properties for generalized fractional differential systems. In Systèmes Différentiels Fractionnaires, Modèles, Méthodes et Applications, ESAIM proceedings, vol. 5 (pp. 145-158). · Zbl 0920.34010
[12] Partington, J. R.: An introduction to Hankel operators. (1988) · Zbl 0668.47022