Periodic wave solutions to a coupled KdV equations with variable coefficients. (English) Zbl 1008.35061

Summary: The periodic wave solutions to coupled KdV equations with variable coefficients are obtained by using the \(F\)-expansion method which can be thought of as an overall generalization of the Jacobi elliptic function expansion method. In the limit cases, the solitary wave solutions are obtained as well.


35Q53 KdV equations (Korteweg-de Vries equations)
35C10 Series solutions to PDEs
Full Text: DOI


[1] Hirota, R.; Satsum, J., Phys. Lett. A, 85, 407 (1981)
[2] Grimshow, R. H.J., Proc. R. Soc., 368, 359 (1979)
[3] Nirmala, N.; Vedan, M. J.; Baby, B. V., J. Math. Phys., 27, 2640 (1986)
[4] Joshi, N., Phys. Lett. A., 125, 456 (1987)
[5] Hong, W.; Jung, Y. D., Phys. Lett. A, 257, 149 (1999)
[6] Wang, M. L.; Wang, Y. M., Phys. Lett. A, 287, 211 (2001)
[7] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001)
[8] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 290, 72 (2001)
[9] Parkes, E. J.; Duffy, B. R.; Abott, P. C., Phys. Lett. A, 295, 280 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.