×

zbMATH — the first resource for mathematics

On a model for phase separation in binary alloys driven by mechanical effects. (English) Zbl 1008.74066
Summary: This work is concerned with mathematical analysis of a system of partial differential equations modeling the effect of phase separation driven by mechanical actions in binary alloys like tin/lead solders. The system combines the (quasistationary) balance of linear momentum with a fourth-order evolution equation of Cahn-Hilliard type for phase separation, and it is highly nonlinearly coupled. Existence and uniqueness results are shown.

MSC:
74N20 Dynamics of phase boundaries in solids
35Q72 Other PDE from mechanics (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976. · Zbl 0328.47035
[2] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematical Studies 5, North-Holland, Amsterdam, 1973. · Zbl 0252.47055
[3] P. Colli, G. Gilardi, M. Grasselli, G. Schimperna, The conserved phase-field system with memory, Adv. Math. Sci. Appl. 11 (2001) 265-291. · Zbl 0982.80006
[4] R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5, Spectre des opérateurs, Masson, Paris, 1984.
[5] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976. · Zbl 0331.35002
[6] Dreyer, W.; Müller, W., A study of the coarsening in tin/led solders, Int. J. solids struct., 37, 3841-3871, (2000) · Zbl 0973.74059
[7] W. Dreyer, W. Müller, Modeling diffusional coarsening in microelectronic solders, in: Proceedings of the PanPac 2001, Hawaii, February 2001.
[8] Dreyer, W.; Müller, W., Quantitative modeling of diffusional coarsening in eutectic tin/lead solders, Int. J. solids struct., 38, 1433-1458, (2001) · Zbl 0961.74523
[9] W. Dreyer, W. Müller, Modeling Diffusional Coarsening in Eutectic Tin/Lead Solders: A Quantitative Approach, WIAS, Berlin, Preprint 540, 1999.
[10] H. Garcke, On mathematical models for phase separation in elastically stressed solids, Habilitation Thesis, University of Bonn, Bonn, 2000.
[11] Gurtin, M., Generalized ginzburg – landau and cahn – hilliard equations based on a microforce balance, Physica D, 92, 178-192, (1996) · Zbl 0885.35121
[12] Kenmochi, N.; Niezgódka, M.; Pawlow, I., Subdifferential operator approach to the cahn – hilliard equation with constraint, J. differ. equations, 117, 320-356, (1995) · Zbl 0823.35073
[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod Gauthier-Villars, Paris, 1969. · Zbl 0189.40603
[14] Miranville, A., Some generalizations of the cahn – hilliard equation, Asymptot. anal., 22, 235-259, (2000) · Zbl 0953.35055
[15] Zafran, M., Spectral theory and interpolation operators, J. funct. anal., 36, 185-204, (1980) · Zbl 0429.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.