zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy robust tracking control for uncertain nonlinear systems. (English) Zbl 1008.93050
This paper discusses the robust output tracking control design for nonlinear systems in the presence of a norm-bounded time-varying uncertainty. The Takagi-Sugeno (T-S) fuzzy model with parametric uncertainties in both the conditions of the state variables available or unavailable is first employed to represent a nonlinear system. Based on (T-S) fuzzy model, fuzzy robust state feedback output tracking controller and fuzzy robust observer-based output tracking controller are proposed. Sufficient conditions are derived for robust asymptotic output tracking controllers in the format of linear matrix inequalities (LMIs), which can be very efficiently solved by using LMI optimization techniques. The overall proposed design methodology presents a systematic and effective framework for an inverted pendulum.

93C42Fuzzy control systems
93B51Design techniques in systems theory
15A39Linear inequalities of matrices
Full Text: DOI
[1] Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE trans. Syst. man cybern. 15, No. 1, 116-132 (1985) · Zbl 0576.93021
[2] Chen, Y. C.; Teng, C. C.: A model reference control structure using fuzzy neural network. Fuzzy sets and systems 73, 291-312 (1995) · Zbl 0852.93053
[3] Jang, J. S. R.; Sun, C. T.: Neural-fuzzy modeling and control. Proc. IEEE 38, No. 3, 378-405 (1995)
[4] Wang, H. O.; Tanaka, K.; Griffin, M. F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE trans. Fuzzy syst. 4, No. 1, 14-23 (1996)
[5] Wang, L. K.; Leung, F. H. F.; Tam, P. K. S.: Fuzzy model-based design of fuzzy logic controllers and its application on combining controllers. IEEE trans. Ind. elect. 45, No. 3, 502-509 (1998)
[6] Lee, H. J.; Park, J. B.; Chen, G.: Robust fuzzy control of nonlinear systems with parametric uncertainties. IEEE trans. Fuzzy syst. 9, No. 2, 369-379 (2001)
[7] Kung, C. C.; Li, H. H.: Tracking control of nonlinear systems by fuzzy model-based controller. Pro. IEEE int. Conf. 2, 623-628 (1997)
[8] Ying, H.: Analytical analysis and feedback linearization tracking control of the general Takagi--sugeno fuzzy dynamical systems. IEEE trans. Syst. man. Cybern. 29, 290-298 (1999)
[9] Leung, F. H. F.; Lam, H. K.; Tam, P. K. S.: Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach. Int. J. Approximate reasoning 26, 129-144 (2001) · Zbl 0972.93035
[10] Tseng, C. -S.; Chen, B. -S.; Uang, H. -J.: Fuzzy tracking control design for nonlinear dynamic systems via T--S fuzzy model. IEEE trans. Fuzzy syst. 9, No. 3, 381-392 (2001)
[11] Khargonekar, P. P.; Persen, I. R.; Zhou, K.: Robust stabilization of uncertainty linear systems: quadratic stability and H$\infty $control theory. IEEE trans. Autom. control 35, No. 3, 356-361 (1990) · Zbl 0707.93060