## On the exponential Diophantine equation $$a^x+b^y=c^z$$.(English)Zbl 1009.11026

Let $$a$$, $$b$$, $$c$$ be fixed positive integers such that $$\min(a,b,c)>1$$ and $$\gcd(a,b,c)=1$$. In this paper the author proves that if $$a,b,c$$ satisfy some congruence conditions, then the equation $$(*)$$ $$a^x+b^y=c^z$$ has only one positive integer solution $$(x,y,z)$$. For example, he proves that if $$a\equiv -1\pmod{b^2}$$, $$b$$ is an odd prime with $$b\equiv 3\pmod 4$$ and $$a^2+b=c$$, then $$(*)$$ has only the positive integer solution $$(x,y,z)= (2,1,1)$$.

### MSC:

 11D61 Exponential Diophantine equations

### Keywords:

congruence conditions
Full Text:

### References:

 [1] Adachi, N.: The Diophantine equation $$x^2\pm ly^2=z^l$$ connected with Fermat’s Last Theorem. Tokyo J. Math., 11 , 85-94 (1988). · Zbl 0653.10016 [2] Brown, E.: Diophantine equations of the form $$x^2+D=y^n$$. J. Reine Angew. Math., 274/275 , 385-389 (1975). · Zbl 0303.10014 [3] Brown, E.: Diophantine equations of the form $$ax^2+Db^2=y^n$$. J. Reine Angew. Math., 291 , 118-127 (1977). · Zbl 0338.10018 [4] Cao, Z.: A note on the Diophantine equation $$a^x+b^y=c^z$$. Acta Arith., 91 , 85-93 (1999). · Zbl 0946.11009 [5] Ljunggren, W.: On the diophantine equation $$x^2+p^2=y^n$$. Norske Vid. Selsk. Forh. Trondheim, 16 , 27-30 (1943). · Zbl 0060.09106 [6] Ljunggren, W.: On the Diophantine equation $$Cx^2+D=y^n$$. Pacific J. Math., 14 , 585-596 (1964). · Zbl 0131.28401 [7] Laurent, M., Mignotte, M., et Nesterenko, Y.: Formes linéairies en deux logarithmes et déterminants d’interpolation. J. Number Theory, 55 , 285-321 (1995). · Zbl 0843.11036 [8] Mignotte, M.: A corollary to a theorem of Laurent-Mignotte-Nesterenko. Acta Arith., 86 , 101-111 (1998). · Zbl 0919.11051 [9] Scott, R.: On the equations $$p^x-b^y=c$$ and $$a^x+b^y=c^z$$. J. Number Theory, 44 , 153-165 (1993). · Zbl 0786.11020 [10] Terai, N.: The Diophantine equation $$x^4\pm py^4=z^p$$. Compt. Rend. Math. Rep. Acad. Sci. Canada, 16 , 63-68 (1994). · Zbl 0830.11014 [11] Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Aith., 90 , 17-35 (1999). · Zbl 0933.11013 [12] Washington, L. C.: Introduction to Cyclotomic Fields. 2nd ed. Grad. Texts in Math., vol. 83, Springer, Berlin-Heidelberg-New York (1997). · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.