Kemper, Gregor; Körding, Elmar; Malle, Gunter; Matzat, B. Heinrich; Vogel, Denis A database of invariant rings. (English) Zbl 1009.13002 Exp. Math. 10, No. 4, 537-542 (2001). The paper describes a database of invariant rings created by the authors. Because of a permanent interest in computational aspects of invariant theory of finite groups they have decided to assemble a collection of examples in form of a database available to the public under ftp://ftp.iwr.uni-heidelberg.de/pub/kemper/DataBase. The computations for the data were done in the computer algebra system Magma. The structure of the database is oriented by Noether’s degree bound, the bound of generators of the Hilbert ideal, respectively the search for particular examples. In fact a user has several powerful retrieval functions and should be able to manipulate the retrieved data and not just to look at them.In the database the authors provide access functions that take boolean-valued functions in the computer algebra systems Magma or Maple as argument. Users can define search criteria with such functions. The tools are illustrated by an example session documented in the paper.Finally the authors use the database in order to review several conjectures in invariant theory, in particular in the modular case. Whence, the database provides a tool for researchers in invariant theory. For a theoretical background see also H. Derksen and G. Kemper, “Computational invariant theory” [Encyclopedia of Math. Sciences (Berlin 2002; Zbl 1011.13003)]. Reviewer: Peter Schenzel (Halle) Cited in 1 ReviewCited in 5 Documents MSC: 13A50 Actions of groups on commutative rings; invariant theory 13P99 Computational aspects and applications of commutative rings Keywords:database of invariant rings; Magma; rings of invariants; finite groups; database Citations:Zbl 1011.13003 Software:Magma; Maple × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] DOI: 10.1017/CBO9780511565809 · doi:10.1017/CBO9780511565809 [2] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125 [3] Broer Abraham, ”Remarks on invariant theory of finite groups” (1997) · Zbl 0911.14003 [4] Derksen Harm, Computational invariant theory (2002) · doi:10.1007/978-3-662-04958-7 [5] Derksen Harm, Algébre non commutative, groupes quantiques et invariants (Reims, 1995) pp 221– (1997) [6] DOI: 10.1006/aima.2000.1952 · Zbl 0973.13003 · doi:10.1006/aima.2000.1952 [7] DOI: 10.1006/jabr.2000.8710 · Zbl 0993.20009 · doi:10.1006/jabr.2000.8710 [8] DOI: 10.1006/jsco.1996.0017 · Zbl 0889.13004 · doi:10.1006/jsco.1996.0017 [9] Kemper Gregor, The curves seminar at Queen’s pp 3– (1998) [10] DOI: 10.1007/978-3-642-59932-3_12 · doi:10.1007/978-3-642-59932-3_12 [11] Kemper Gregor, Computational methods for representations of groups and algebras (Essen, 1997) (1999) [12] DOI: 10.1007/BF01456821 · JFM 45.0198.01 · doi:10.1007/BF01456821 [13] DOI: 10.4153/CJM-1954-028-3 · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3 [14] Smith Larry, Polynomial invariants of finite groups (1995) [15] DOI: 10.1090/S0273-0979-97-00724-6 · Zbl 0904.13004 · doi:10.1090/S0273-0979-97-00724-6 [16] DOI: 10.1090/S0273-0979-1979-14597-X · Zbl 0497.20002 · doi:10.1090/S0273-0979-1979-14597-X [17] Sturmfels Bernd, Algorithms in invariant theory (1993) · Zbl 0802.13002 · doi:10.1007/978-3-7091-4368-1 [18] Watanabe Keiichi, Osaka J. Math. 11 pp 1– (1974) [19] Watanabe Keiichi, Osaka J. Math. 11 pp 379– (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.