Dai, Binlin; Fang, Ainong; Nai, Bing Discreteness criteria for subgroups in complex hyperbolic space. (English) Zbl 1009.32016 Proc. Japan Acad., Ser. A 77, No. 10, 168-172 (2001). The authors study discreteness criteria for subgroups of \(U(1,n; \mathbb{C})\) in complex hyperbolic space \(H_n^\mathbb{C}\).The main result in this paper is as follows: A nonelementary subgroup \(G\) of \(U(1,n;\mathbb{C})\) in complex hyperbolic space \(H_n^\mathbb{C}\) with Condition A is discrete if and only if every two generator subgroup is discrete.Here we say that \(G\) satisfies Condition A provided that \(G\) has no sequence \(\{g_j\}\) of distinct elements of finite order such that \(\text{Card (fix}(g_j))= \infty\) in \(\partial H_n^\mathbb{C}\) and \(g_j\to I\) as \(j\to\infty\). They also prove that if a nonelementary subgroup \(G\) of \(U(1,n;\mathbb{C})\) contains a sequence \(\{g_j\}\) of distinct elements with \(\text{Card (fix}(g_j)\cap \partial H_n^\mathbb{C}) \neq\infty\) and \(g_j \to I\) as \(j\to\infty\), then \(G\) contains a non-discrete, nonelementary two generator subgroup. Reviewer: Yoshihiro Aihara (Shizuoka) Cited in 7 Documents MSC: 32Q45 Hyperbolic and Kobayashi hyperbolic manifolds 32M99 Complex spaces with a group of automorphisms 22E99 Lie groups Keywords:limit set; elementary groups; discreteness; complex hyperbolic space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kamiya, S.: Notes on some classical series associated with discrete subgroups of \(U(1,n;\mathbf{C})\) on \(\partial{B^n}\times\partial{B^n}\times\partial{B^n}\). Proc. Japan Acad., 68A , 137-139 (1992). · Zbl 0764.30034 · doi:10.3792/pjaa.68.137 [2] Kamiya, S.: Chordal and matrix norms of unitary transformations. First Korean-Japanese colloquium on finite or infinite dimensional complex analysis (eds. Kajiwara, J., Kazama, H., and Shon, K. H.). pp. 121-125 (1993). [3] Kamiya, S.: On discrete subgroups of \(PU(1,2;\mathbf{C})\) with Heisenberg translations. J. London Math. Soc., 62 (2), 827-842 (2000). · Zbl 1011.22006 · doi:10.1112/S0024610700001435 [4] Chen, S. S., and Greenberg, L.: Hyperbolic Space. Contributions to Analysis (eds. Kra, I., and Maskit, B.). Academic Press, New York, pp. 49-87 (1974). [5] Goldman, W. M.: Complex Hyperbolic Geometry. Oxford University Press, Oxford (1999). · Zbl 0939.32024 [6] Goldman, W. M., and Paker, J. R.: Dirichlet polyhedra for dihedral groups in complex hyperbolic space. J. Geom. Anal., 2 , 517-554 (1992). · Zbl 0762.51009 · doi:10.1007/BF02921576 [7] Parker, J. R.: On ford isometric spheres in complex hyperbolic space. Math. Proc. Cambridge Phil. Soc., 115 , 501-512 (1994). · Zbl 0819.32010 · doi:10.1017/S0305004100072261 [8] Parker, J. R.: Uniform discreteness and Heisenberg translations. Math. Z., 225 , 485-505 (1997). · Zbl 0881.32013 · doi:10.1007/PL00004315 [9] Jørgensen, T.: On discrete groups of Möbius transformations. Amer. J. Math., 98 (3), 739-749 (1976). · Zbl 0336.30007 · doi:10.2307/2373814 [10] Isachenko, N. A.: Systems of generators of subgroups of \(PSL(2,\mathbf{C})\). Sib. Math. J., 31 , 162-165 (1990). · Zbl 0713.20045 · doi:10.1007/BF00971163 [11] Martin, G. J.: On the discrete Möbius groups in all dimensions. Acta Math., 163 , 253-289 (1989). · Zbl 0698.20037 · doi:10.1007/BF02392737 [12] Martin, G. J.: On discrete isometry groups of negative curvature. Pacific J. Math., 160 (1), 109-127 (1993). · Zbl 0822.57026 · doi:10.2140/pjm.1993.160.109 [13] Abikoff, W., and Hass, A.: Non-discrete groups of hyperbolis motions. Bull. London Math. Soc., 22 , 233-238 (1990). · Zbl 0709.20026 · doi:10.1112/blms/22.3.233 [14] Waterman, P. L.: Möbius transformations in several dimensions. Adv. Math., 101 , 87-113 (1993). · Zbl 0793.15019 · doi:10.1006/aima.1993.1043 [15] Fang, A., and Nai, B.: On discreteness and convergence of Möbius transformation groups. J. London Math. Soc., 61 (2), 761-773 (2000). · Zbl 0959.30027 · doi:10.1112/S0024610700008784 [16] Jørgensen, T.: A note on subgroups of \(SL(2,\mathbf{C})\). Quart. J. Math. Oxford, 28 (2), 209-212 (1977). · Zbl 0358.20047 · doi:10.1093/qmath/28.2.209 [17] Kamiya, S.: Notes on elements of \(U(1,n;\mathbf{C})\). Hiroshima Math. J., 21 , 23-45 (1991). · Zbl 0721.30033 [18] Martin, G. J., and Skora, R.: Group actions of the two sphere. Amer. J. Math., 111 , 387-402 (1989). · Zbl 0691.57020 · doi:10.2307/2374665 [19] Gehring, F. W., and Martin, G. J.: Discrete guasiconformal groups. Proc. London Math. Soc., 55 (3), 331-358 (1987). · Zbl 0628.30027 · doi:10.1093/plms/s3-55_2.331 [20] Bowditch, B. H.: Geometrical finiteness with variable negative curvature. Duke Math. J., 77 (1), 229-274 (1995). · Zbl 0877.57018 · doi:10.1215/S0012-7094-95-07709-6 [21] Friedland, S., and Hersonsky, S.: Jorgensen’s inequality for discrete groups in normed algebras. Duke Math. J., 69 , 593-614 (1993). · Zbl 0799.30033 · doi:10.1215/S0012-7094-93-06924-4 [22] Ballmann, W., Gromov, M., and Schroeder, V.: Manifolds of Nonpositive Curvature. Progress in Mathematics, vol. 61, Birkhäuser, Boston (1985). · Zbl 0591.53001 [23] Beardon, A. F.: The Geometry of Discrete Groups. Springer, New York-Heidelberg-Berlin (1983). · Zbl 0528.30001 [24] Fang, A., Jiang, Y., and Fang, M.: On groups of Clifford matrices and Lie groups. Complex Variables, 31 , 65-73 (1996). · Zbl 0865.30027 [25] Maskit, B.: Kleinian Groups. Springer, Berlin (1987). · Zbl 0627.30039 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.