×

zbMATH — the first resource for mathematics

A finite element approach to the pricing of discrete lookbacks with stochastic volatility. (English) Zbl 1009.91030
Summary: Finite element methods are described for valuing lookback options under stochastic volatility. Particular attention is paid to the method for handling the boundary equations. For some boundaries, the equations reduce to first-order hyperbolic equations which must be discretized to ensure that outgoing waves are correctly modelled. Some example computations show that for certain choices of parameters, the option price computed for a lookback under stochastic volatility can differ from the price under the usual constant volatility assumption by as much as 35% (i.e. $7.30 compared with $5.45 for an at-the-money put), even though the models are calibrated so as to produce exactly the same price for an at-the-money vanilla European option with the same time remaining until expiry.

MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
35L60 First-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aït-Sahalia Y., Nonparametric estimation of state-price densities implicit in financial asset prices (1997)
[2] Allievi A., J. Camp. Phys 132 pp 157– (1997) · Zbl 0891.65125 · doi:10.1006/jcph.1996.5604
[3] Andersen T., J. Econometrics 77 pp 343– (1997) · Zbl 0925.62529 · doi:10.1016/S0304-4076(96)01819-2
[4] Andersen W., Comp. Fluids 23 pp 1– (1994) · Zbl 0806.76053 · doi:10.1016/0045-7930(94)90023-X
[5] Andersen W., AIAA J 24 pp 1453– (1986) · doi:10.2514/3.9465
[6] Axellson O., Finite Element Solution of Boundary Value Problems (1984)
[7] Babbs S., Binomial valuation of lookback options (1992) · Zbl 0967.91030
[8] Ball C., J. Fm. Quant. Anal 29 pp 589– (1994) · doi:10.2307/2331111
[9] Barraquand J., Math. Fin 6 pp 17– (1996) · Zbl 0919.90005 · doi:10.1111/j.1467-9965.1996.tb00111.x
[10] Barth T. J., Lecture Series 1994-05: Computational Fluid Dynamics (1994)
[11] Bates D., Rev. Fin. Studies 9 pp 69– (1996) · doi:10.1093/rfs/9.1.69
[12] Blunt M, J. Comp. Phys 102 pp 194– (1992) · Zbl 0775.76109 · doi:10.1016/S0021-9991(05)80015-4
[13] Cheuk T., Lookback options and the observation frequency: A binomial approach (1994)
[14] Clarke N., Research Report 96-16, in: The multigrid solution of two factor American put options (1996)
[15] Conze A., J. Finance 46 pp 1893– (1991) · doi:10.1111/j.1540-6261.1991.tb04648.x
[16] D’Azevedo E., SIAM J. Matrix Anal. Applic 13 pp 944– (1992) · Zbl 0760.65028 · doi:10.1137/0613057
[17] D’Azevedo E., BIT 32 pp 442– (1992) · Zbl 0761.65017 · doi:10.1007/BF02074880
[18] Dempster M., App. Math. Fin 4 pp 1– (1997) · Zbl 1009.91017 · doi:10.1080/135048697334809
[19] Forsyth P., SIAM J. Sci. Stat. Camp 12 pp 1029– (1991) · Zbl 0725.76087 · doi:10.1137/0912055
[20] Forsyth P., Comp. Fluids 26 pp 249– (1997) · Zbl 0884.76062 · doi:10.1016/S0045-7930(96)00041-2
[21] Forsyth P., SIAM J. Sci. Comp 18 pp 1328– (1997) · Zbl 0897.76048 · doi:10.1137/S1064827594265824
[22] Forsyth, P., Zvan, R. and Vetzal, K. A general finite element approach for PDE option pricing. Conference on Numerical Methods in Finance. 1997, Toronto.
[23] Goldman M., J. Finance 34 pp 1111– (1979)
[24] Heston S., Rev. Fin. Studies 6 pp 327– (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[25] Hull J., J. Finance 42 pp 281– (1987) · doi:10.1111/j.1540-6261.1987.tb02568.x
[26] Hull J., J. Derivatives pp 21– (1993) · doi:10.3905/jod.1993.407869
[27] Jameson A., International Journal for Numerical Methods in Fluids 20 pp 743– (1995) · Zbl 0837.76055 · doi:10.1002/fld.1650200805
[28] Jiang H., Comp. Fluids 24 pp 753– (1995) · Zbl 0845.76070 · doi:10.1016/0045-7930(95)00018-8
[29] Lamoureux C., Rev. Fin. Studies 6 pp 293– (1993) · doi:10.1093/rfs/6.2.293
[30] LeVeque R. J., Numerical Methods for Conservation Laws (1990) · Zbl 0723.65067 · doi:10.1007/978-3-0348-5116-9
[31] Lyden S., J. Derivatives pp 79– (1996) · doi:10.3905/jod.1996.407960
[32] Melino A., J. Econometrics 45 pp 239– (1990) · Zbl 04574635 · doi:10.1016/0304-4076(90)90100-8
[33] Rubin B., Soc. Pet. Eng. Res. Eng 1 pp 163– (1986)
[34] Selmin V., Int. J. Num. Meth. Eng 39 pp 1– (1996) · Zbl 0842.76037 · doi:10.1002/(SICI)1097-0207(19960115)39:1<1::AID-NME837>3.0.CO;2-G
[35] Spekreijse S., Mathematics of Computation 49 (179) pp 135– (1987) · Zbl 0654.65066 · doi:10.1090/S0025-5718-1987-0890258-9
[36] Stein E., Rev. Fin. Studies 4 pp 727– (1991) · Zbl 06857133 · doi:10.1093/rfs/4.4.727
[37] Sweby P., SIAM J. Num. Anal 21 pp 995– (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[38] Thuburn J., Monthly Weather Review 125 pp 1990– (1997) · doi:10.1175/1520-0493(1997)125<1990:TSPSAT>2.0.CO;2
[39] van der Vorst H., SIAM J. Sci. Stat. Comp 13 pp 631– (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[40] Vetzal K., J. Banking Fin 21 pp 169– (1997) · doi:10.1016/S0378-4266(96)00035-0
[41] Wiggins J., J. Fin. Econ 19 pp 351– (1987) · doi:10.1016/0304-405X(87)90009-2
[42] Wilmott P., Option Pricing (1993)
[43] Zvan, R., Forsyth, P. and Vetzal, K. A general finite element approach for PDE option pricing models. Preliminary version in Proceedings of Computational and Quantitive Finance 98. New York. · Zbl 0967.91023
[44] Zvan R, J. Comp. Appl. Math 91 pp 199– (1998) · Zbl 0945.65005 · doi:10.1016/S0377-0427(98)00037-5
[45] Zvan R., The Journal of Computational Finance 1 (2) pp 39– (1998) · doi:10.21314/JCF.1997.006
[46] Zvan, R., Vetzal, K. and Forsyth, P. PDE methods for pricing barrier options. Proceedings of the Eighth Annual Derivatives Securities Conference. 1998, Boston. Accepted in J. Econ. Dyn. Control; also · Zbl 0967.91023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.