×

Electric load forecasting: Literature survey and classification of methods. (English) Zbl 1009.93500


MSC:

93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C95 Application models in control theory
62M20 Inference from stochastic processes and prediction
62P30 Applications of statistics in engineering and industry; control charts
93A30 Mathematical modelling of systems (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1109/TSMC.1982.4308827
[2] DOI: 10.1016/0967-0661(95)00128-H
[3] DOI: 10.1016/S0307-904X(96)00165-5 · Zbl 1065.00513
[4] DOI: 10.1080/00908319708908853
[5] ALFARBS, H. K. and NAZEBRUDDIN, M. Regression-based methodology for daily peak load forecasting. Proceedings of the 2nd International Conference on Operations and Quantitative Management. January3-6, Ahmedabad, India. pp.468–471.
[6] ATLAS, L., CONNOR, J., PARK., D., MARKS, R. J., LIPPMAN, A. and MUTHUSAMY, Y. A performance comparison of trained multilayer perceptrons and trained classification trees. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. pp.915–920.
[7] DOI: 10.1109/87.294341
[8] BARAKAT E. H., IEE Proceedings – C 139 pp 136– (1992)
[9] DOI: 10.1109/59.65910
[10] DOI: 10.1111/j.1468-0394.1996.tb00281.x · Zbl 01939540
[11] DOI: 10.1109/61.568270
[12] BROWN R. E., IEEE Transmission and Distribution Conference Proceedings 1 pp 369– (1999)
[13] BUNN, D. W. and FARMER, E. D. 1985.Review of Short-term Forecasting Methods in the Electric Power Industry, 13–30. New York: Wiley.
[14] DOI: 10.1016/S0142-0615(98)00057-X
[15] DOI: 10.1109/59.708572
[16] DOI: 10.1016/S0378-7796(96)01077-2
[17] DOI: 10.1016/0378-7796(95)00977-1
[18] DOI: 10.1109/59.207323
[19] DOI: 10.1016/S0360-8352(97)00009-0
[20] DOI: 10.1016/S0957-4174(97)00048-1
[21] DOI: 10.1109/59.627877
[22] DOI: 10.1109/59.630482
[23] DOI: 10.1109/59.709118
[24] DOI: 10.1049/ip-gtd:19960600
[25] CZBRNICHOW T., International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications 4 pp 85– (1996)
[26] DAMBORG, M. J., EL-SHARKAWI, M. A., AGGOUNE, M. E. and MARKS, R. J. II. Potential of artificial neural network to power system operation. Proceedings of the IEEE International Symposium on Circuits and Systems. New Orleans, LA. pp.2933–2937.
[27] DASH P. K., International Journal of Engineering Intelligent Systems 1 pp 103– (1993)
[28] DOI: 10.1080/00207729508929156 · Zbl 0977.68566
[29] DOI: 10.1049/ip-gtd:19960314
[30] DOI: 10.1016/0952-1976(95)00023-T
[31] DOI: 10.1016/S0952-1976(97)00069-9
[32] DOI: 10.1016/0142-0615(91)90021-M
[33] DJUKANOVIC M., IEEE Proceedings – C 140 pp 311– (1993)
[34] DREZGA, I. and RAHMAN, S. Phase-space based short-term load forecasting for deregulated electric power industry. Proceedings of the International Joint Conference on Neural Networks. Vol. S, pp.3405–3409.
[35] DOI: 10.1109/59.780894
[36] DOI: 10.1016/0378-7796(95)00987-6
[37] ELRAZAZ Z. S., IEE Proceedings – C 136 pp 29– (1989)
[38] DOI: 10.1109/59.317646
[39] GIRGIS A. A., International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications 3 pp 205– (1995)
[40] DOI: 10.1109/59.116982
[41] DOI: 10.1109/PROC.1987.13927
[42] DOI: 10.1109/59.331433
[43] DOI: 10.1002/(SICI)1520-6416(19980715)124:1<7::AID-EEJ2>3.0.CO;2-B
[44] DOI: 10.1109/59.99372
[45] DOI: 10.1109/59.141697
[46] DOI: 10.1109/59.801894
[47] Hsu Y. Y., IEEE Proceedings – C 139 pp 471– (1992)
[48] Hsu Y. Y., IEEE Proceedings – C 138 pp 407– (1992)
[49] DOI: 10.1049/ip-gtd:19971144
[50] HYDE O., Mathematical Engineering in Industry 6 pp 155– (1997)
[51] DOI: 10.1109/59.574927
[52] DOI: 10.1109/59.709108
[53] IJUMBA N.M., African 1999 IEEE 2 pp 989– (1999)
[54] JUBERIAS G., IEEE Transmission and Distribution Conference Proceedings 1 pp 314– (1999)
[55] DOI: 10.1016/0378-7796(92)90096-J
[56] KANDIL N., 1999 Canadian Conference on Electrical and Computer Engineering 2 pp 1057– (1999)
[57] DOI: 10.1109/59.466492
[58] KUNG, C.H., DEVANEY, M. J., HUANG, C.M. and KUNG, C.M. Adaptive power system load forecasting scheme using a genetic algorithm embedded neural network. Proceedings of the IEEE Instrumentation and Measurement Technology Conference. May18-21, St Paul, MN. pp.308–311. Part I
[59] DOI: 10.1016/S0378-7796(96)01125-X
[60] DOI: 10.1109/59.141695
[61] LEYAN, X. and CHBN, W. J. Artificial neural network shortterm electrical load forecasting techniques. TENCON 99: Proceedings of the IEEE Region 10 Conference. Vol. 2, pp.1458–1461.
[62] DOI: 10.1049/ip-gtd:19941357
[63] DOI: 10.1109/59.496169
[64] LIU, X. O., ANG, B. W. and GOH, T. N. Forecasting of electricity consumption: a comparison between an econometric model and a neural network model. IEEE International Joint Conference on Neural Networks. November18-21, Singapore. pp.1254–1259.
[65] DOI: 10.1109/59.221223
[66] DOI: 10.1109/59.32473
[67] DOI: 10.1016/0378-7796(95)00954-G
[68] DOI: 10.1109/59.744480
[69] DOI: 10.1049/piee.1968.0258
[70] DOI: 10.1109/59.221222
[71] DOI: 10.1109/59.221222
[72] DOI: 10.1177/014233128901100204
[73] McMENAMiN J. S., Energy Journal 19 pp 43– (1998)
[74] DOI: 10.1109/59.41700
[75] DOI: 10.1016/S0378-7796(96)01115-7
[76] DOI: 10.1109/59.486123
[77] MORI H., IEEE Systems, Man, and Cybernetics Conference Proceedings 6 pp 551– (1999)
[78] NAZARKO, J. and STYCZYNSKI, Z. A. Application of statistical and neural approaches to the daily load profiles modelling in power distribution systems. IEEE: Transmission and Distribution Conference. Vol. 1, pp.320–325.
[79] NIBBUR D., Neural Network World 5 pp 951– (1995)
[80] OONSIVILAN A., 1999 Canadian Conference on Electrical and Computer Engineering 3 pp 1023– (1999)
[81] PAARMANN L. D., Adaptive online load forecasting via time series modeling Electric Power Systems Research 32 pp 219– (1995)
[82] DOI: 10.1016/S0142-0615(98)00056-8
[83] DOI: 10.1109/59.667372
[84] DOI: 10.1109/59.331456
[85] PAPALEXOPULOS A. D., IEEE Transactions on Power Systems pp 1214– (1990)
[86] DOI: 10.1109/59.76685
[87] DOI: 10.1109/SECON.1991.147742
[88] DOI: 10.1109/59.76686
[89] PENG, T. M., HUBELB, N. F. and KARADY, G. G. An conceptual approach to the application of neural networks for short term load forecasting. Proceedings of the IEEE International Symposium on Circuits and Systems. New Orleans, LA. pp.2942–2945.
[90] DOI: 10.1109/59.141711
[91] DOI: 10.1109/59.260877
[92] DOI: 10.1109/5.53400
[93] DOI: 10.1109/59.260833
[94] RAHMAN S., IEEE Transactions on Power Systems 8 pp 509– (1993)
[95] DOI: 10.1016/S0378-7796(96)01114-5
[96] DOI: 10.1109/59.116990
[97] RAMIRBZ-ROSADO I. J., International Journal of Power and Energy Systems 16 pp 49– (1996)
[98] DOI: 10.1049/ip-gtd:19981998
[99] DOI: 10.1049/ip-gtd:19990462
[100] SRINIVASAN D., IEEE Transactions on Power Systems 8 pp 343– (1992)
[101] SRINIVASAN, D. and LEB, M. A. Survey of hybrid fuzzy neural approaches to electric load forecasting. Proceedings of the IEEE International Conference on Systems. Man and Cybernetics. Part 5. Vancouver, BC. pp.4004–4008.
[102] SRINIVASAN, D., LIEW, A. C. and CHEN, S. P. J. A novel approach to electric load forecasting based on neural networks. IEEE International Joint Conference on Neural Networks. November18-21, Singapore. pp.1172–1177.
[103] DOI: 10.1109/59.780934
[104] DOI: 10.1016/S0378-7796(96)01059-0
[105] DOI: 10.1109/59.651623
[106] DOI: 10.1109/59.477100
[107] DOI: 10.1109/TPAS.1984.318448
[108] DOI: 10.1049/ip-gtd:19990382
[109] DOI: 10.1109/59.651639
[110] DOI: 10.1109/59.486125
[111] DOI: 10.1109/59.761912
[112] ZHAO H., Proceedings of the Chinese Society of Electrical Engineers 17 pp 211– (1997)
[113] DOI: 10.1016/S0378-7796(99)00063-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.