zbMATH — the first resource for mathematics

Affine embeddings with a finite number of orbits. (English) Zbl 1010.14011
Summary: Let \(G\) be a reductive algebraic group and let \(H\) be a reductive subgroup of \(G\). We describe all pairs \((G,H)\) such that, for any affine \(G\)-variety \(X\) with a dense \(G\)-orbit isomorphic to \(G/H\), the number of \(G\)-orbits in \(X\) is finite.

14M07 Low codimension problems in algebraic geometry
14E25 Embeddings in algebraic geometry
14L30 Group actions on varieties or schemes (quotients)
57S25 Groups acting on specific manifolds
14R20 Group actions on affine varieties
Full Text: DOI
[1] [Akh] Д. Н. Ахиезер,О дейсмвиях с конечным числом орбим, Функц. анал. и его прил.19 (1985), No 1, 1–5. English transl.: D. N. Akhiezer,On actions with a finite number of orbits, Func. Anal. Appl.19 (1985), 1–4. · Zbl 1222.11084
[2] [Ar] I. V. Arzhantsev,Affine embeddings with a finite number of orbits, Prépubl. de L’Inst. Fourier467 (1999).
[3] [BHM] A. Bialynicki-Birula, G. Hochschild, G. D. Mostow,Extensions of representations of algebraic linear groups, Amer. J. Math.85 (1963), 131–144. · Zbl 0116.02302
[4] [K1] F. Knop,Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann.295 (1993), 333–363. · Zbl 0789.14040
[5] [K2] F. Knop,The asymptotic behavior of invariant collective motion, Inv. Math.116 (1994), 309–328. · Zbl 0802.58024
[6] [Ko] B. Kostant,Lie group representations on polynomial rings, Amer. J. Math.85 (1963), 327–404. · Zbl 0124.26802
[7] [Kr] H. Kraft,Geometrische Methoden in der Invariantentheorie, Viehweg, Braunschweig/Wiesbaden, 1985. Russian transl.: Х. Крафт,Геомемрические мемоды в меории инварианмов, Мир, М., 1987.
[8] [L1] D. Luna,Slices étales, Mem. Soc. Math. France33 (1973), 81–105.
[9] [L2] D. Luna,Adhérences d’orbite et invariants, Inv. Math.29 (1975), 231–238. · Zbl 0315.14018
[10] [LV] D. Luna, Th. Vust,Plongements d’espaces homogènes, Comment. Math. Helv.58 (1983), 186–245. · Zbl 0545.14010
[11] [Pa] D. I. Panyushev,Complexity of quasi-affine homogeneous G-varieties, t-decompositions, and affine homogeneous spaces of complexity 1, Adv. in Soviet Math.8 (1992), 151–166. · Zbl 0763.14024
[12] [Po] В. Л. Попов,Квазиоднородные аффинные алгебраические многообразия группы SL 2, Изв. АН СССР, Сер. мат.37 (1973), 792–832. English transl.: V. L. Popov,Quasihomogeneous affine algebraic varieties of the group SL 2, Math. USSR-Izv.7 (1973), 793–831. · Zbl 0342.02023
[13] [PV] Э. Б. Винберг, В. Л. Попов,Теория инварианмов, Совр. пробл. мат., Фунд. направл., ВИНИТИ, Х., т. 55, 1989, 137–309. English transl.: V. L. Popov, E. B. Vinberg,Invariant Theory, Encycl. Math. Sci., vol. 55, Springer, 1994, 123–284. · Zbl 0698.00023
[14] [Rit] A. Rittatore,Algebraic monoids and group embeddings, Transform. Groups3 (1998), 375–396. · Zbl 0946.14028
[15] [Se] F. J. Servedio,Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc.176 (1973), 421–444. · Zbl 0266.20043
[16] [Su] А. А. Суханов,ОпиСание наблюдаемых подгрупп линейных алгебраических групп, Мат. Сб.137 (1988), 90–102. English transl.: A. A. Sukhanov,Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb.65 (1990), 97–108. · Zbl 1222.11084
[17] [V1] Э. Б. Винберг,Сложносмь дейсмвий редукмивных чrупп, Функц. анал. и его прил.20 (1986), 1–13. English transl.: E. B. Vinberg,Complexity of actions of reductive groups, Func. Anal. Appl.20 (1986), 1–11. · Zbl 0671.35076
[18] [V2] E. B. Vinberg,On reductive algebraic semigroups, in:Lie Groups and Lie Algebras, E. B. Dynkin Seminar, Amer. Math. Soc. Transl. (2)169 (1995), 145–182.
[19] [VK] Э. Б. Винберг, Б. Н. кимельфельд,Однородные обласми на флаговых многообразиях и сферические оодгруппы полупросмых групп Ли, Функц. анал. и его прил.12 (1978), 12–19. English transl.: E. B. Vinberg, B. N. Kimel’fed’d,Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Func. Anal. Appl.12 (1978), 168–174. · Zbl 0342.02023
[20] [Wa] W. C. Waterhouse,The unit group of affine algebraic monoids, Proc. Amer. Math. Soc.85 (1982), 506–508. · Zbl 0517.20043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.