Briend, Jean-Yves; Duval, Julien Two characterizations of equilibrium measure of an endomorphism of \(P^k(\mathbb{C})\). (Deux caractérisations de la mesure d’équilibre d’un endomorphisme de \(P^k(\mathbb{C})\).) (French. English summary) Zbl 1010.37004 Publ. Math., Inst. Hautes Étud. Sci. 93, 145-159 (2001). Summary: Let \(\mu\) be the equilibrium measure of an endomorphism of \(P^k(\mathbb{C})\). We show that it is its unique measure of maximal entropy. We build \(\mu\) directly as the distribution of preimages of any point outside an algebraic exceptional set. Cited in 5 ReviewsCited in 53 Documents MSC: 37A35 Entropy and other invariants, isomorphism, classification in ergodic theory 37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets Keywords:maximal entropy; distribution of preimages PDF BibTeX XML Cite \textit{J.-Y. Briend} and \textit{J. Duval}, Publ. Math., Inst. Hautes Étud. Sci. 93, 145--159 (2001; Zbl 1010.37004) Full Text: DOI Numdam EuDML