The tail of the stationary distribution of an autoregressive process with \(\text{ARCH}(1)\) errors. (English) Zbl 1010.62083

Summary: We consider the class of autoregressive processes with ARCH(1) errors given by the stochastic difference equation \[ X_n=\alpha X_{n-1}+ \sqrt{\beta+ \lambda X^2_{n-1}} \varepsilon_n, \quad n\in\mathbb{N}, \] where \((\varepsilon_n)_{n\in\mathbb{N}}\) are i.i.d. random variables. Under general and tractable assumptions we show the existence and uniqueness of a stationary distribution. We prove that the stationary distribution has a Pareto-like tail with a well-specified tail index which depends on \(\alpha,\lambda\) and the distribution of the innovations \((\varepsilon_n)_{n\in\mathbb{N}}\). This paper generalizes results for the ARCH(1) process (the case \(\alpha=0)\). The generalization requires a new method of proof and we invoke a Tauberian theorem.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G10 Stationary stochastic processes
60J05 Discrete-time Markov processes on general state spaces
62G32 Statistics of extreme values; tail inference
Full Text: DOI


[1] Alsmeyer, G. (2000). On the Harris recurrence of iterated random Lipschitz functions and related convergence rate results. Preprint, Inst. Mathematische Statistik, Univ. M ünster. · Zbl 1022.60067
[2] Asmussen, S. (1987). Applied Probability and Queues. Wiley, Chichester. · Zbl 0624.60098
[3] Billingsley, P. (1995). Probability and Measure. Wiley, New York. · Zbl 0822.60002
[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001
[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Econometrics 31 307-327. · Zbl 0616.62119
[6] Bollerslev, T., Chou, R. Y. and Kroner, K. F. (1992). ARCHmodelling in finance: a review of the theory and empirical evidence. J. Econometrics 52 5-59. · Zbl 0825.90057
[7] Borkovec, M. (2000). Extremal behavior of the autoregressive process with ARCH(1) errors. Stochastic Process Appl. 85 189-207. · Zbl 0991.62069
[8] Borkovec, M. (2001). Asymptotic behavior of the sample autocovariance and autocorrelation function of an AR(1) process with ARCH(1) errors. Available at www.ma.tum.de/stat/. URL: · Zbl 0996.62077
[9] de Haan, L., Resnick, S. I., Rootzén, H. and de Vries G. G. (1989). Extremal behavior of solutions to a stochastic difference equation with applications to ARCHprocesses. Stochastic Process. Appl. 32 213-224. · Zbl 0679.60029
[10] Diebolt, J. and Guégan, D. (1990). Probabilistic properties of the general nonlinear Markovian process of order one and applications to time series modelling. Technical Report, 125, L.S.T.A., Paris 6.
[11] Embrechts, P., Kl üppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin. · Zbl 0873.62116
[12] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50 987-1007. JSTOR: · Zbl 0491.62099
[13] Fama, E. F. (1965). The behavior of stock market prices. J. Business 38 34-105. · Zbl 0129.11903
[14] Feigin, P. D. and Tweedie, R. L. (1985). Random coefficient autoregressive processes: a Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal. 6 1-14. · Zbl 0572.62069
[15] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076
[16] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207-248. · Zbl 0291.60029
[17] Kiefersbeck, N. (1999). Stationarität und Tailindex von zeitdiskreten Volatilitätsmodellen. Diploma thesis. Available at www-m4.mathematik.tu-muenchen.de/m4/Diplarb/.
[18] Maercker, G. (1997). Statistical inference in conditional heteroskedastic autoregressive models. Dissertation, Univ. Braunschweig.
[19] Mandelbrot, B. (1963). The variation of certain speculative prices. J. Business 36 394-419.
[20] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London. · Zbl 0925.60001
[21] Priestley, M. B. (1988). Nonlinear and Nonstationary Time Series. Academic Press, New York. · Zbl 0667.62068
[22] Taylor, S. (1995). Modelling Financial Time Series. Wiley, Chichester. · Zbl 1130.91345
[23] Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Univ. Press. · Zbl 0716.62085
[24] Tweedie, R. L. (1976). Criteria for classifying general Markov chains. Adv. Appl. Probab. 8 737-771. Tweedie, R. L. (1983a). Criteria for rates of convergence of Markov chains, with application to queueing and storage theory. In Probability, Statistics and Analysis (J. F. C. Kingman and G. E. H. Reuter, eds.). Cambridge Univ. Press. Tweedie, R. L. (1983b). The existence of moments for stationary Markov chains. J. Appl. Probabab. 20 191-196. JSTOR: · Zbl 0361.60014
[25] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab. 11 750-783. JSTOR: · Zbl 0417.60073
[26] Weiss, A. A. (1984). ARMA models with ARCHerrors. J. Time Ser. Anal. 3 129-143. · Zbl 0549.62079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.