×

Gaussian limits associated with the Poisson-Dirichlet distribution and the Ewens sampling formula. (English) Zbl 1010.62101

Summary: We consider large \(\theta\) approximations for the stationary distribution of the neutral infinite alleles model as described by the Poisson-Dirichlet distribution with parameter \(\theta\). We prove a variety of Gaussian limit theorems for functions of the population frequencies as the mutation rate \(\theta\) goes to infinity.
In particular, we show that if a sample of size \(n\) is drawn from a population described by the Poisson-Dirichlet distribution, then the conditional probability of a particular sample configuration is asymptotically normal with mean and variance determined by the Ewens sampling formula [see W.J. Ewens, Mathematical population genetics. (1979; Zbl 0422.92011)]. The asymptotic normality of the conditional sampling distribution is somewhat surprising since it is a fairly complicated function of the population frequencies. Along the way, we also prove an invariance principle giving weak convergence at the process level for powers of the size-biased allele frequencies.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92D15 Problems related to evolution
60F05 Central limit and other weak theorems
62E20 Asymptotic distribution theory in statistics

Citations:

Zbl 0422.92011
Full Text: DOI

References:

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[2] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[3] ETHIER, S. N. and KURTZ, T. G. (1994). Convergence to Fleming-Viot processes in the weak atomic topology. Stochastic Process. Appl. 54 1-27. · Zbl 0817.60029 · doi:10.1016/0304-4149(94)00006-9
[4] EWENS, W. J. (1979). Mathematical Population Genetics. Springer, Berlin. · Zbl 0422.92011
[5] DONNELLY, P. and JOYCE, P. (1989). Continuity and weak convergence of ranked and sizebiased permutations on the infinite simplex. Stochastic Process. Appl. 31 89-103. · Zbl 0694.60009 · doi:10.1016/0304-4149(89)90104-X
[6] GILLESPIE, J. H. (1999). The role of population size in molecular evolution. Theoret. Population Biol. 55 145-156. · Zbl 0920.92017 · doi:10.1006/tpbi.1998.1391
[7] GRIFFITHS, R. C. (1979). On the distribution of allele frequencies in a diffusion model. Theoret. Population Biol. 15 140-158. · Zbl 0422.92015 · doi:10.1016/0040-5809(79)90031-5
[8] JOYCE, P. (1998). Partition structures and sufficient statistics. J. Appl. Probab. 35 622-632. · Zbl 0952.62005 · doi:10.1239/jap/1032265210
[9] JOYCE, P., KRONE, S. and KURTZ, T. G. (2001). When can one detect overdominant selection in the infinite alleles model? Unpublished manuscript.
[10] KARATZAS, I. and SHREVE, S. (1988). Brownian Motion and Stochastic Calculus. Springer, New York. · Zbl 0638.60065
[11] KINGMAN, J. F. C. (1977). The population structure associated with the Ewens sampling formula. Theoret. Population Biol. 11 274-283. · Zbl 0421.92011 · doi:10.1016/0040-5809(77)90029-6
[12] KURTZ, T. G. and PROTTER, P. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 1035-1070. · Zbl 0742.60053 · doi:10.1214/aop/1176990334
[13] WATTERSON, G. A. and GUESS, H. A. (1977). Is the most frequent allele the oldest? Theoret. Population Biol. 11 141-160. · Zbl 0361.92017 · doi:10.1016/0040-5809(77)90023-5
[14] MOSCOW, IDAHO 83844-1103 E-MAIL: joyce@uidaho.edu krone@uidaho.edu T. G. KURTZ DEPARTMENTS OF MATHEMATICS AND STATISTICS UNIVERSITY OF WISCONSIN MADISON, WISCONSIN 53706-1388 E-MAIL: kurtz@math.wisc.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.