×

Fundamental unit system and class number of real bicyclic biquadratic number fields. (English) Zbl 1011.11071

For three certain types of real bicyclic biquadratic number fields, the author intends to determine explicitly the class numbers and the fundamental systems of the unit groups by using the class numbers and the fundamental units of their quadratic subfields. Namely, let \(D_1= n^2+2\), \(D_2= n^4+2n^2+2\), \((2\mid n\geq 4)\), and let \(D_1,D_2\) be square free. Then the class number \(h_K\) and the fundamental system \(U_K\) of the unit groups of \(K= \mathbb{Q}(\sqrt{n^2+2}, \sqrt{n^4+2n^2+2})\) are \(h_K= (\frac 12)h_1h_2h_3\) and \(U_K= \{-1, \varepsilon_1, \varepsilon_2, \sqrt{\varepsilon_1 \varepsilon_3}\}\), where \(h_i\) and \(\varepsilon_i\) mean respectively the class number and the fundamental unit of subfields \(k_i= \mathbb{Q}(\sqrt{D_i})\) for \(i=1,2\), and \(k_3= \mathbb{Q} (\sqrt{D_1D_2})\). The other remainder types are the following: \(D_1= (n^2+rd) (n^2+sd)\), \(D_2= (n^2+td) (n^2+ud)\) and \(D_1= n^2+d\), \(D_2= m^2n^2+r\).

MSC:

11R20 Other abelian and metabelian extensions
11R27 Units and factorization
11R29 Class numbers, class groups, discriminants
Full Text: DOI

References:

[1] Frei, G.: Fundamental systems of units in number fields \(\mathbf{Q}(\sqrt{D^2+d},\sqrt{D^2+4d})\) with \(d\mid D\). Arch. Math., 36 , 137-144 (1988). · Zbl 0461.12005 · doi:10.1007/BF01223681
[2] Frei, G.: Fundamental systems of units in biquadratic parametric number fields. J. Number Theory, 15 , 295-303 (1982). · Zbl 0501.12006 · doi:10.1016/0022-314X(82)90034-8
[3] Liu, D.: On the fundamental unit system of real biquadratic field (1984). (Master thesis, Peking Univ.).
[4] Lu, H.: Gauss’ Conjectures on the Quadratic Number Fields. Shanghai Scientific and Technical Publication, Shanghai (1991).
[5] Wada, H.: On the class number and unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo. Sci. Sect. 1, 13 , 201-209 (1966). · Zbl 0158.30103
[6] Wang, K., and Zhang, X.: Fundamental unit system and class number for real number field of type (2,2,2). Tsinghua Sci. Tech., 5 , 150-153 (2000). · Zbl 1137.11345
[7] Zhang, X.: The relative integral bases and unit of the number fields of type \((\ell,\ell,\ldots,\ell)\). Acta Math. Sinica, 29 , 622-627 (1986). · Zbl 0616.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.