×

zbMATH — the first resource for mathematics

Modular functions on multilattices. (English) Zbl 1011.28008
Summary: We prove that every modular function on a multilattice \(L\) with values in a topological Abelian group generates a uniformity on \(L\) which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of \(L\).
MSC:
28B10 Group- or semigroup-valued set functions, measures and integrals
06B99 Lattices
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. Avallone: Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197-1204. · Zbl 0841.28007
[2] A. Avallone: Nonatomic vector-valued modular functions. Annal. Soc. Math. Polon. Series I: Comment. Math. XXXIX (1999), 37-50. · Zbl 0987.28012
[3] A. Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 43 (1999), . · Zbl 0965.28004
[4] A. Avallone and A. De Simone: Extensions of modular functions on orthomodular lattices. Italian J. Pure Appl. Math, To appear. · Zbl 1008.28011
[5] A. Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo XLVII (1998), 221-264. · Zbl 0931.28009
[6] A. Avallone and J. Hamhalter: Extension theorems (vector measures on quantum logics). Czechoslovak Math. J. 46 (121) (1996), 179-192. · Zbl 0909.28010
[7] A. Avallone and H. Weber: Lattice uniformities generated by filters. J. Math. Anal. Appl. 209 (1997), 507-528. · Zbl 0907.06015
[8] G. Barbieri and H. Weber: A topological approach to the study of fuzzy measures. Funct. Anal. Econom. Theory, Springer, 1998, pp. 17-46. · Zbl 0916.28015
[9] G. Barbieri, M. A. Lepellere and H. Weber: The Hahn decomposition theorem and applications. Fuzzy Sets Systems 118 (2001), 519-528. · Zbl 0977.28013
[10] H. J. Bandelt, M. Van de Vel and E. Verheul: Modular interval spaces. Math. Nachr. 163 (1993), 177-201. · Zbl 0808.46011
[11] M. Benado: Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II. Czechoslovak Math. J. 5 (1955), 308-344. · Zbl 0068.25902
[12] G. Birkhoff: Lattice Theory, Third edition. AMS Providence, R.I., 1967. · Zbl 0153.02501
[13] I. Fleischer and T. Traynor: Equivalence of group-valued measure on an abstract lattice. Bull. Acad. Pol. Sci. 28 (1980), 549-556. · Zbl 0514.28004
[14] I. Fleischer and T. Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287-291. · Zbl 0458.06004
[15] M. G. Graziano: Uniformities of Fréchet-Nikodým type on Vitali spaces. Semigroup Forum 61 (2000), 91-115. · Zbl 0966.28008
[16] D. J. Hensen: An axiomatic characterization of multilattices. Discrete Math. 33 (1981), 99-101. · Zbl 0447.06005
[17] J. Jakubík: Sur les axiomes des multistructures. Czechoslovak Math. J. 6 (1956), 426-430. · Zbl 0075.01901
[18] J. Jakubík and M. Kolibiar: Isometries of multilattice groups. Czechoslovak Math. J. 33 (1983), 602-612. · Zbl 0538.06018
[19] J. Lihová: Valuations and distance function on directed multilattices. Math. Slovaca 46 (1996), 143-155. · Zbl 0889.06002
[20] J. Lihová and K. Repasky: Congruence relations on and varieties of directed multilattices. Math. Slovaca 38 (1988), 105-122. · Zbl 0642.06003
[21] T. Traynor: Modular functions and their Fréchet-Nikodým topologies. Lectures Notes in Math. 1089 (1984), 171-180. · Zbl 0576.28014
[22] H. Weber: Uniform Lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II. Ann. Mat. Pura Appl. 160 (1991), 347-370. · Zbl 0790.06006
[23] H. Weber: Lattice uniformities and modular functions on orthomodular lattices. Order 12 (1995), 295-305. · Zbl 0834.06013
[24] H. Weber: On modular functions. Funct. Approx. XXIV (1996), 35-52. · Zbl 0887.06011
[25] H. Weber: Valuations on complemented lattices. Internat. J. Theoret. Phys. 34 (1995), 1799-1806. · Zbl 0843.06005
[26] H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47-64. · Zbl 1121.54312
[27] H. Weber: Two extension theorems. Modular functions on complemented lattices. Preprint. · Zbl 0998.06006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.