×

Auxiliary equation method for solving nonlinear partial differential equations. (English) Zbl 1011.35035

Summary: By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation.

MSC:

35C05 Solutions to PDEs in closed form
35L70 Second-order nonlinear hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hereman, W.; Takaoka, M., J. Phys. A, 23, 4805 (1990) · Zbl 0719.35085
[2] Wang, M. L., Phys. Lett. A, 199, 169 (1995)
[3] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) · Zbl 0948.76595
[4] Tian, B.; Gao, Y. T., Eur. Phys. J. B, 22, 351 (2001)
[5] Gao, Y. T.; Tian, B., Comput. Phys. Commun., 133, 158 (2001) · Zbl 0976.65092
[6] Gudkov, V. V., J. Math. Phys., 38, 4794 (1997) · Zbl 0886.35131
[7] Fan, E. G., Phys. Lett. A, 277, 212 (2000) · Zbl 1167.35331
[8] Elwakil, S. A.; El-labany, S. K.; Zaharan, M. A.; Sabry, R., Phys. Lett. A, 299, 179 (2002) · Zbl 0996.35043
[9] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., Phys. Lett. A, 295, 280 (2002) · Zbl 1052.35143
[10] Sirendaoreji; Jiong, S., Phys. Lett. A, 298, 133 (2002) · Zbl 0995.35056
[11] Malfliet, W., Am. J. Phys., 60, 650 (1992) · Zbl 1219.35246
[12] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) · Zbl 0972.35062
[13] Boussineq, J., Comptes Rendus, 72, 755 (1871)
[14] Toda, M., Phys. Rep., 18, 1 (1975)
[15] Zakharov, V. E., Sov. Phys. JETP, 38, 108 (1974)
[16] Scott, A. C., (Miura, R. M., Bäcklund Transformations. Bäcklund Transformations, Lecture Notes in Mathematics, 515 (1975), Springer-Verlag: Springer-Verlag Berlin), 80
[17] Ablowitz, M. J.; Segur, H., J. Fluid Mech., 92, 539 (1979)
[18] Ablowitz, M. J.; Bar Yaacov, D.; Fokas, A. S., Stud. Appl. Math., 69, 135 (1983) · Zbl 0527.35080
[19] Boiti, M.; Leon, J.; Pempinelli, F., Inverse Problems, 3, 371 (1987)
[20] Paquin, G.; Winternitz, P., Physica D, 46, 122 (1990) · Zbl 0725.35104
[21] Tian, B.; Gao, Y. T., J. Phys. A: Math. Gen., 29, 2895 (1996) · Zbl 0896.35131
[22] Lou, S. Y., Phys. Lett. A, 176, 96 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.