zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 1011.47039
The authors suggest a new class of three step iterative schemes for solving nonlinear equations $Tx=x$ with asymptotically nonexpansive mappings in Banach spaces. The Ishikawa-type and Mann-type iteration schemes are included as particular cases. The convergence of the new schemes is proved.

47H09Mappings defined by “shrinking” properties
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47J25Iterative procedures (nonlinear operator equations)
Full Text: DOI
[1] Bose, S. C.: Weak convergence to the fixed point of an asymptotically nonexpansive map. Proc. amer. Math. soc. 68, 305-308 (1978) · Zbl 0377.47037
[2] S. S. Chang, Weak Convergence to the Fixed Point for Nonexpansive and Asymptotically Nonexpansive Mappings in Banach Spaces, preprint.
[3] Chidume, C. E.; Moor, Chika: Fixed point iteration for pseudocontractive maps. Proc. amer. Math. soc. 127, 1163-1170 (1999) · Zbl 0913.47052
[4] Glowinski, R.; Le Tallec, P.: Augemented Lagrangian and operator-splitting methods in nonlinear mechanics. (1989) · Zbl 0698.73001
[5] Goeble, K.; Kirk, W. A.: A fixed point theorem fo asymptotically nonexpansive mappings. Proc. amer. Math. soc. 35, 171-174 (1972) · Zbl 0256.47045
[6] Haubruge, S.; Nguyen, V. H.; Strodiot, J. J.: Convergence analysis and applications of the glowinski--le tallec splitting method for finding a zero of the sum of two maximal monotone operaors. J. optim. Theory appl. 97, 645-673 (1998) · Zbl 0908.90209
[7] Hicks, T.; Kubicek, J.: On the Mann iteration process in a Hilbert space. J. math. Anal. appl. 59, 498-504 (1977) · Zbl 0361.65057
[8] Ishikawa, S.: Fixed point by a new iteration. Proc amer. Math. soc. 44, 147-150 (1974) · Zbl 0286.47036
[9] Liu, Q. H.: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear anal. 26, 1835-1842 (1996) · Zbl 0861.47047
[10] Mann, W. R.: Mean value methods in iteration. Proc. amer. Math. soc. 4, 506-510 (1953) · Zbl 0050.11603
[11] Noor, M. Aslam: New aproximation schemes for general variational inequalities. J. math. Anal. appl. 251, 217-229 (2000) · Zbl 0964.49007
[12] Noor, M. Aslam: Three-step iterative algorithms for multivalued quasi variational inclusions. J. math. Anal. appl. (2001) · Zbl 0986.49006
[13] Noor, M. Aslam: Some predictor--corrector algorithms for multivalued variational inequalites. J. optim. Theory appl. 108 (2001) · Zbl 0996.47055
[14] Rhoades, B. E.: Fixed point iterations for certain nonlinear mappings. J. math. Anal. appl. 183, 118-120 (1994) · Zbl 0807.47045
[15] Rhoades, B. E.: Comments on two fixed point iteration methods. J. math. Anal. appl. 56, 741-750 (1976) · Zbl 0353.47029
[16] Rhoades, B. E.: A comparison of various definitions of contractive mappings. Trans. amer. Math. soc. 226, 257-290 (1977) · Zbl 0365.54023
[17] Schu, J.: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. math. Anal. appl. 158, 407-413 (1991) · Zbl 0734.47036
[18] Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. austral. Math. soc. 43, 153-159 (1991) · Zbl 0709.47051
[19] Tan, K. K.; Xu, H. K.: Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process. J. math. Anal. appl. 178, 301-308 (1993) · Zbl 0895.47048
[20] Tan, K. K.; Xu, H. K.: Fixed point iteration processes for asymptotically nonexpansive mapping. Proc. amer. Math. soc. 122, 733-739 (1994) · Zbl 0820.47071
[21] Xu, H. K.: Inequalities in Banach spaces with applicaitons. Nonlinear anal. 16, 1127-1138 (1991) · Zbl 0757.46033
[22] Xu, H. K.: Existence and convergence for fixed points of asymptotically nonexpansive type. Nonlinear anal. 16, 1139-1146 (1991) · Zbl 0747.47041