zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sliding mode observers for detection and reconstruction of sensor faults. (English) Zbl 1011.93505
Summary: This paper proposes two methods for detecting and reconstructing sensor faults using sliding mode observers. In both methods, fictitious systems are introduced in which the original sensor fault appears as an actuator fault. The original sensor faults are then reconstructed using a `secondary’ sliding mode observer. For both methods, there are certain conditions which must be satisfied for successful fault detection and reconstruction. The methods are demonstrated using a chemical process example.

MSC:
93B07Observability
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
93B12Variable structure systems
WorldCat.org
Full Text: DOI
References:
[1] Chen, J.; Patton, R. J.: Robust model-based fault diagnosis for dynamic systems. (1999) · Zbl 0920.93001
[2] Chilali, M.; Gahinet, P.: H$\infty $design with pole placement constraintsan LMI approach. IEEE transactions on automatic control 41, 358-367 (1996) · Zbl 0857.93048
[3] Edwards, C.; Spurgeon, S. K.: On the development of discontinuous observers. International journal of control 59, 1211-1229 (1994) · Zbl 0810.93009
[4] Edwards, C.; Spurgeon, S. K.: A sliding mode observer based FDI scheme for the ship benchmark. European journal of control 6, 341-356 (2000) · Zbl 1293.93154
[5] Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection and isolation. Automatica 36, 541-553 (2000) · Zbl 0968.93502
[6] Frank, P. M.: Analytical and qualitative model-based fault diagnosis--a survey and some new results. European journal of control 2, 6-28 (1996) · Zbl 0857.93015
[7] Hermann, G., Spurgeon, S. K., & Edwards, C. (2000). Model-based control of the HDA-plant, a non-linear, large scale chemical process, using sliding mode and H\infty approaches. UKACC Control Conference, Cambridge, 2000.
[8] Hermans, F. J. J., & Zarrop, M. B. (1996). Sliding mode observers for robust sensor monitoring. 13th IFAC world congress, San Francisco (pp. 211-216).
[9] Magni, J. F.; Mouyon, P.: On residual generation by observer and parity space approaches. IEEE transactions on automatic control 39, 441-447 (1994) · Zbl 0800.93183
[10] Patton, R. J.; Frank, P. M.; Clark, R. N.: Fault diagnosis in dynamic systems: theory and application. (1989)
[11] Sreedhar, R., Fernandez, B., & Masada, G. Y. (1993). Robust fault detection in nonlinear systems using sliding mode observers. IEEE conference on control applications, Vancouver (pp. 715-721).
[12] Tan, C. P., & Edwards, C. (2000). An LMI approach for designing sliding mode observers. IEEE conference on decision and control, Sydney (pp. 2587-2592).
[13] Utkin, V. I.: Sliding modes in control optimization. (1992) · Zbl 0748.93044
[14] Zhang, Q.; Basseville, M.; Benveniste, A.: Fault detection and isolation in nonlinear dynamic systemsa combined input-output and local approach. Automatica 34, 1359-1373 (1998) · Zbl 0961.93007