[1] |
Bainov, D. D.; Simeonov, P. S.: Systems with impulse effects: stability, theory and applications. (1989) · Zbl 0676.34035 |

[2] |
Boyd, S. P.; Barratt, C. H.: Linear controller design: limits of performance. (1991) · Zbl 0748.93003 |

[3] |
Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM studies in applied mathematics 15 (1994) · Zbl 0816.93004 |

[4] |
Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036 |

[5] |
Clegg, J. C.: A nonlinear integrator for servo-mechanisms. AIEE transactions, part II, applications and industry 77, 41-42 (1958) |

[6] |
Dayawansa, W. P.; Martin, C. F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE transactions on automatic control 44, 751-760 (1999) · Zbl 0960.93046 |

[7] |
Eker, J.; Malmborg, J.: Design and implementation of a hybrid control strategy. IEEE control and systems magazine 19, 12-21 (1999) |

[8] |
Francis, B. A.: A course in H$\infty $control theory. Lecture notes in control and information sciences 88 (1985) |

[9] |
Gurvits, L. (1996). Stability of linear inclusions--Part 2. Technical Report, NECI. |

[10] |
Hespanha, J. P. (1998). Logic-based switching algorithms in control. Ph.D. thesis, Yale University, New Haven, CT. |

[11] |
Hespanha, J. P., Liberzon, D., Morse, A. S., Anderson, B. D. O., Brinsmead, T. S., & de Bruyne, F. (2001). Multiple model adaptive control, part 2: Switching, International Journal of Robust and Nonlinear Control (Special Issue on Hybrid Systems in Control), 11, 479-496. · Zbl 0994.93025 |

[12] |
Hespanha, J. P., & Morse, A. S. (1996). Towards the high performance control of uncertain processes via supervision. In Proceedings of the 30th annual conference on information sciences and systems 1, 405-410. |

[13] |
Hollot, C. V., Beker, O., & Chait, Y. (2001). Plant with integrator: An example of reset control overcoming limitations of linear feedback. In Proceedings of the 2001 American control conference, Vol. 2 (pp. 1519-1520). · Zbl 1006.93030 |

[14] |
Horowitz, I.; Rosenbaum, P.: Non-linear design for cost of feedback reduction in systems with large parameter uncertainty. International journal of control 24, No. 6, 977-1001 (1975) · Zbl 0312.93019 |

[15] |
Khalil, H. K.: Nonlinear systems. (1992) · Zbl 0969.34001 |

[16] |
Liberzon, D.; Hespanha, J. P.; Morse, A. S.: Stability of switched linear systemsa Lie-algebraic condition. Systems and control letters 37, 117-122 (1999) · Zbl 0948.93048 |

[17] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems and magazine 19, 59-70 (1999) |

[18] |
Megretski, A.; Rantzer, A.: System analysis via integral quadratic constraints. IEEE transactions on automatic control 42, 819-830 (1997) · Zbl 0881.93062 |

[19] |
Molchanov, A. P.; Pyatnitskiy, Y. S.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems and control letters 13, 59-64 (1989) · Zbl 0684.93065 |

[20] |
Morse, A. S. (1995). Control using logic-based switching. In A. Isidori (Ed.), Trends in control: An European perspective (pp. 69-113). London: Springer. · Zbl 0821.93004 |

[21] |
Morse, A. S.: Supervisory control of families of linear set-point controllers--part 1Exact matching. IEEE transactions on automatic control 41, 1413-1431 (1996) · Zbl 0872.93009 |

[22] |
Morse, A. S.: Supervisory control of families of linear set-point controllers--part 2Robustness. IEEE transactions on automatic control 2, 1500-1515 (1997) · Zbl 0926.93010 |

[23] |
Narendra, K. S.; Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE transactions on automatic control 39, 2469-2471 (1994) · Zbl 0825.93668 |

[24] |
Packard, A. (1995). Personal communication. |

[25] |
Shorten, R. N., & Narendra, K. S. (1997). A sufficient condition for the existence of a common Lyapunov function for two second order linear systems. In Proceedings of the 36th conference on decision and control, 4, 3521-3522. |

[26] |
Tay, T. T.; Moore, J. B.; Horowitz, R.: Indirect adaptive techniques for fixed controller performance enhancement. International journal of control 50, 1941-1959 (1989) · Zbl 0691.93030 |

[27] |
Tsitsiklis, J. N.; Blondel, V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard--when not impossible--to compute and to approximate. Mathematics of control, signals and systems 10, No. 1, 31-40 (1997) · Zbl 0888.65044 |

[28] |
Vegte, J. V.: Feedback control systems. (1994) · Zbl 0753.93034 |

[29] |
Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamical systems. IEEE transactions on automatic control 43, 461-474 (1998) · Zbl 0905.93024 |

[30] |
Yoshihiro Mori, T. M., & Kuroe, Y. (1997). A solution to the common Lyapunov function problem for continuous-time systems. In Proceedings of the 36th conference on decision and control, Vol. 3 (pp. 3530-3531). |

[31] |
Youla, D. C.; Jabr, H. A.; Bongiorno, J. J.: Modern Wiener-Hopf design of optimal controllers--part II. The multivariable case. IEEE transactions on automatic & control 21, 319-338 (1976) · Zbl 0339.93035 |