zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Switching between stabilizing controllers. (English) Zbl 1011.93533
Summary: This paper deals with the problem of switching between several linear time-invariant (LTI) controllers--all of them capable of stabilizing a specific LTI process--in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to find realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where conflicting requirements make a single LTI controller unsuitable.

93D15Stabilization of systems by feedback
93B12Variable structure systems
Full Text: DOI
[1] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effects: stability, theory and applications. (1989) · Zbl 0676.34035
[2] Boyd, S. P.; Barratt, C. H.: Linear controller design: limits of performance. (1991) · Zbl 0748.93003
[3] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM studies in applied mathematics 15 (1994) · Zbl 0816.93004
[4] Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036
[5] Clegg, J. C.: A nonlinear integrator for servo-mechanisms. AIEE transactions, part II, applications and industry 77, 41-42 (1958)
[6] Dayawansa, W. P.; Martin, C. F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE transactions on automatic control 44, 751-760 (1999) · Zbl 0960.93046
[7] Eker, J.; Malmborg, J.: Design and implementation of a hybrid control strategy. IEEE control and systems magazine 19, 12-21 (1999)
[8] Francis, B. A.: A course in H$\infty $control theory. Lecture notes in control and information sciences 88 (1985)
[9] Gurvits, L. (1996). Stability of linear inclusions--Part 2. Technical Report, NECI.
[10] Hespanha, J. P. (1998). Logic-based switching algorithms in control. Ph.D. thesis, Yale University, New Haven, CT.
[11] Hespanha, J. P., Liberzon, D., Morse, A. S., Anderson, B. D. O., Brinsmead, T. S., & de Bruyne, F. (2001). Multiple model adaptive control, part 2: Switching, International Journal of Robust and Nonlinear Control (Special Issue on Hybrid Systems in Control), 11, 479-496. · Zbl 0994.93025
[12] Hespanha, J. P., & Morse, A. S. (1996). Towards the high performance control of uncertain processes via supervision. In Proceedings of the 30th annual conference on information sciences and systems 1, 405-410.
[13] Hollot, C. V., Beker, O., & Chait, Y. (2001). Plant with integrator: An example of reset control overcoming limitations of linear feedback. In Proceedings of the 2001 American control conference, Vol. 2 (pp. 1519-1520). · Zbl 1006.93030
[14] Horowitz, I.; Rosenbaum, P.: Non-linear design for cost of feedback reduction in systems with large parameter uncertainty. International journal of control 24, No. 6, 977-1001 (1975) · Zbl 0312.93019
[15] Khalil, H. K.: Nonlinear systems. (1992) · Zbl 0969.34001
[16] Liberzon, D.; Hespanha, J. P.; Morse, A. S.: Stability of switched linear systemsa Lie-algebraic condition. Systems and control letters 37, 117-122 (1999) · Zbl 0948.93048
[17] Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems and magazine 19, 59-70 (1999)
[18] Megretski, A.; Rantzer, A.: System analysis via integral quadratic constraints. IEEE transactions on automatic control 42, 819-830 (1997) · Zbl 0881.93062
[19] Molchanov, A. P.; Pyatnitskiy, Y. S.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems and control letters 13, 59-64 (1989) · Zbl 0684.93065
[20] Morse, A. S. (1995). Control using logic-based switching. In A. Isidori (Ed.), Trends in control: An European perspective (pp. 69-113). London: Springer. · Zbl 0821.93004
[21] Morse, A. S.: Supervisory control of families of linear set-point controllers--part 1Exact matching. IEEE transactions on automatic control 41, 1413-1431 (1996) · Zbl 0872.93009
[22] Morse, A. S.: Supervisory control of families of linear set-point controllers--part 2Robustness. IEEE transactions on automatic control 2, 1500-1515 (1997) · Zbl 0926.93010
[23] Narendra, K. S.; Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE transactions on automatic control 39, 2469-2471 (1994) · Zbl 0825.93668
[24] Packard, A. (1995). Personal communication.
[25] Shorten, R. N., & Narendra, K. S. (1997). A sufficient condition for the existence of a common Lyapunov function for two second order linear systems. In Proceedings of the 36th conference on decision and control, 4, 3521-3522.
[26] Tay, T. T.; Moore, J. B.; Horowitz, R.: Indirect adaptive techniques for fixed controller performance enhancement. International journal of control 50, 1941-1959 (1989) · Zbl 0691.93030
[27] Tsitsiklis, J. N.; Blondel, V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard--when not impossible--to compute and to approximate. Mathematics of control, signals and systems 10, No. 1, 31-40 (1997) · Zbl 0888.65044
[28] Vegte, J. V.: Feedback control systems. (1994) · Zbl 0753.93034
[29] Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamical systems. IEEE transactions on automatic control 43, 461-474 (1998) · Zbl 0905.93024
[30] Yoshihiro Mori, T. M., & Kuroe, Y. (1997). A solution to the common Lyapunov function problem for continuous-time systems. In Proceedings of the 36th conference on decision and control, Vol. 3 (pp. 3530-3531).
[31] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J.: Modern Wiener-Hopf design of optimal controllers--part II. The multivariable case. IEEE transactions on automatic & control 21, 319-338 (1976) · Zbl 0339.93035