Garofalo, Nicola; Vassilev, Dimiter Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type. (English) Zbl 1012.35014 Duke Math. J. 106, No. 3, 411-448 (2001). Let \(G\) be a stratified, nilpotent Lie group (i.e. a Carnot group). Let \({\mathbf g}\) denote its Lie algebra. Let \(G\) have step 2, that is \({\mathbf g}=V_1\oplus V_2,\) where \(V_2=[V_1,V_1]\) and \([V_1,V_2]=\{0\}.\) Endow \({\mathbf g}\) with an inner product \(\langle\cdot,\cdot\rangle\) with respect to which the above \(\oplus\) is orthogonal. Let \(J: V_2\rightarrow\text{End}(V_1)\) be the map defined by \(\langle J(v_2)v_1',v''_2\rangle=\langle v_2,[v_1',v''_2]\rangle,\) \(v_2\in V_2,\) \(v_1',v''_2\in V_1.\) One says that \(G\) is of Heisenberg type precisely when for every given \(v_2\in V_2\) with \(\langle v_2,v_2\rangle=1,\) the map \(J(v_2): V_1\rightarrow V_1\) is orthogonal. In this paper, the authors study positive solutions to the CR Yamabe equation \[ L u=-u^{(Q+2)/(Q-2)},\quad u\in\overline{C_0^\infty(\Omega)}^{\|\cdot\|_{1,2}},\quad u\geq 0, \] on groups of Heisenberg type, where \(\Omega\subset G\) is a domain of \(G,\) \(L=-\sum_{j=1}^{m} X_j^*X_j\) is a given sub-Laplacian on \(G\), \(\{X_1,\ldots,X_m\}\) being a basis of \(V_1,\) \(Q=\dim V_1+2\dim V_2\) is the homogeneous dimension of \(G\), and finally where \(\|u\|_{1,2}= \|u\|_{L^{2Q/(Q-2)}(\Omega)}+\sum_{j=1}^{m}\|X_ju\|_{L^2(\Omega)}.\) For the subclass of groups of Iwasawa type, they characterize those solutions that are invariant with respect to the action of the orthogonal group in \(V_1\). Reviewer: Alberto Parmeggiani (Bologna) Cited in 55 Documents MSC: 35H20 Subelliptic equations 35A30 Geometric theory, characteristics, transformations in context of PDEs 43A80 Analysis on other specific Lie groups Keywords:Carnot group; sub-Laplacian PDF BibTeX XML Cite \textit{N. Garofalo} and \textit{D. Vassilev}, Duke Math. J. 106, No. 3, 411--448 (2001; Zbl 1012.35014) Full Text: DOI OpenURL References: [1] T. Aubin, Espaces de Sobolev sur les variétés Riemanniennes , Bull. Sci. Math. (2) 100 (1976), 149–173. · Zbl 0328.46030 [2] –. –. –. –., Problèms isopérimétriques et espaces de Sobolev , J. Diff. Geom. 11 (1976), 573–598. · Zbl 0371.46011 [3] A. D. Alexandrov, A characteristic property of spheres , Ann. Mat. Pura Appl. (4) 58 (1962), 303–315. · Zbl 0107.15603 [4] W. Beckner, On the Grushin operator and hyperbolic symmetry , to appear in Proc. Amer. Math. Soc. JSTOR: · Zbl 0987.47037 [5] I. Birindelli and A. Cutri, A semi-linear problem for the Heisenberg Laplacian , Rend. Sem. Mat. Univ. Padova 94 (1995), 137–153. · Zbl 0858.35040 [6] I. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method , Comm. Partial Differential Equations 24 (1999), 1875–1890. · Zbl 0944.35023 [7] J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , Ann. Inst. Fourier (Grenoble) 19 (1969), 277–304. · Zbl 0176.09703 [8] L. Caffarelli, N. Garofalo, and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences , Comm. Pure Appl. Math. 47 (1994), 1457–1474. · Zbl 0819.35016 [9] L. Capogna, D. Danielli, and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , Amer. J. Math. 118 (1996), 1153–1196. · Zbl 0878.35020 [10] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations , Duke Math. J. 63 (1991), 615–.\hs622. · Zbl 0768.35025 [11] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples , Cambridge Stud. Adv. Math. 18 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0704.22007 [12] M. Cowling, A. H. Dooley, A. Korányi, and F. Ricci, \(H\)-type groups and Iwasawa decompositions , Adv. Math. 87 (1991), 1–.\hs41. · Zbl 0761.22010 [13] M. Cowling and A. Korányi, “Harmonic analysis on Heisenberg type groups from a geometric viewpoint” in Lie Group Representation, III (College Park, Md., 1982/1983), Lecture Notes in Math. 1077 , Springer, Berlin, 1984, 60–100. · Zbl 0546.22011 [14] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups , Proc. Amer. Math. Soc. 83 (1981), 69–70. JSTOR: · Zbl 0475.43010 [15] E. Damek, Harmonic functions on semidirect extensions of type \(H\) nilpotent groups , Trans. Amer. Math. Soc. 290 (1985), 375–384. · Zbl 0593.43010 [16] –. –. –. –., A Poisson kernel on Heisenberg type nilpotent groups , Collq. Math. 53 (1987), 239–247. · Zbl 0661.53035 [17] –. –. –. –., The geometry of semidirect extensions of a Heisenberg type nilpotent group , Collq. Math. 53 (1987), 255–268. · Zbl 0661.53033 [18] G. B. Folland, A fundamental solution for a subelliptic operator , Bull. Amer. Math. Soc. 79 (1973), 373–376. · Zbl 0256.35020 [19] –. –. –. –., Subelliptic estimates and function spaces on nilpotent Lie groups , Ark. Mat. 13 (1975), 161–207. · Zbl 0312.35026 [20] G. B. Folland and E. M. Stein, Estimates for the \(\Bar \partial_b\) complex and analysis on the Heisenberg group , Comm. Pure Appl. Math. 27 (1974), 429–522. · Zbl 0293.35012 [21] N. Garofalo and E. Sartori, Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates , Adv. Differential Equations 4 (1999), 137–161. · Zbl 0951.35045 [22] N. Garofalo and D. N. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians , to appear in Math. Ann. · Zbl 1158.35341 [23] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle , Comm. Math. Phys. 68 (1979), 209–243. · Zbl 0425.35020 [24] –. –. –. –., “Symmetry of positive solutions of nonlinear elliptic equations in \(R_j\spn\)” in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7A Academic Press, New York, 1981, 369–.\hs402. [25] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order , Grundlehren Math. Wiss. 224 , Springer, New York, 1983. · Zbl 0562.35001 [26] H. Hopf, Differential Geometry in the Large , Lecture Notes in Math. 1000 , Springer, Berlin, 1983. · Zbl 0526.53002 [27] H. Hörmander, Hypoelliptic second order differential equations , Acta Math. 119 (1967), 147–171. · Zbl 0156.10701 [28] D. Jerison and J. M. Lee, “A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds” in Microlocal Analysis (Boulder, Colo., 1983), Contemp. Math. 27 , Amer. Math. Soc., Providence, 1984, 57–.\hs63. · Zbl 0577.53035 [29] –. –. –. –., The Yamabe problem on CR manifolds , J. Differential Geom. 25 (1987), 167–197. · Zbl 0661.32026 [30] –. –. –. –., Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem , J. Amer. Math. Soc. 1 (1988), 1–13. · Zbl 0634.32016 [31] –. –. –. –., Intrinsic CR normal coordinates and the CR Yamabe problem , J. Differential Geom. 29 (1989), 303–343. · Zbl 0671.32016 [32] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms , Trans. Amer. Math. Soc. 258 (1980), 147–153. · Zbl 0393.35015 [33] –. –. –. –., Riemannian nilmanifolds attached to Clifford modules , Geom. Dedicata 11 (1981), 127–136. · Zbl 0495.53046 [34] –. –. –. –., On the geometry of groups of Heisenberg type , Bull. London Math. Soc. 15 (1983), 35–.\hs42. · Zbl 0521.53048 [35] A. Kaplan and F. Ricci, “Harmonic analysis on groups of Heisenberg type” in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math. 992 , Springer, Berlin, 1983, 416–.\hs435. · Zbl 0521.43008 [36] A. Korányi, Kelvin transforms and harmonic polynomials on the Heisenberg group , J. Funct. Anal. 49 (1982), 177–185. · Zbl 0514.43006 [37] –. –. –. –., Geometric properties of Heisenberg-type groups , Adv. in Math. 56 (1985), 28–38. · Zbl 0589.53053 [38] P.-L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part 1 , Rev. Mat. Iberoamericana 1 (1985), 145–201. · Zbl 0704.49005 [39] –. –. –. –., The concentration-compactness principle in the calculus of variations, the limit case, Part 2 , Rev. Mat. Iberoamericana 1 (1985), 45–121. · Zbl 0704.49006 [40] G. Lu and J. Wei, On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups , Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 83–89. · Zbl 0887.35052 [41] J. Serrin, A symmetry problem in potential theory , Arch. Rational Mech. Anal. 43 (1971), 304\hs–318. · Zbl 0222.31007 [42] R. Sperb, Maximum Principles and Their Applications , Math. Sci. Engrg. 157 , Academic Press, New York, 1981. · Zbl 0454.35001 [43] G. Talenti, Best constant in the Sobolev inequality , Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. · Zbl 0353.46018 [44] D. N. Vassilev, Ph.D. dissertation, Purdue Univ., West Lafayette, Ind., 2000. [45] H. F. Weinberger, Remark on the preceding paper by Serrin , Arch. Rational Mech. Anal. 43 (1971), 319–320. · Zbl 0222.31008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.