×

On the regularity of the blow-up set for semilinear heat equations. (English) Zbl 1012.35039

The blow-up phenomena arising in the following semilinear problem: \[ u_t=\Delta u+|u|^{p-1}u, \quad u(0)= u_0\in L^\infty (\mathbb{R}^N) \] is considered. There \(u:\mathbb{R}^N \times[0,T) \to\mathbb{R}\), \(p>1\), \((N-2) p<N+2\) and either \(u_0\geq 0\) or \((3N-4)p <3N+8\). A solution \(u(t)\) blows-up in finite time if its maximal existence time \(T\) is finite. In this case, \[ \lim_{t \to T}\bigl \|u(t)\bigr \|_{H^1(\mathbb{R}^N)} =\lim_{t\to T}\bigl \|u(t) \bigr\|_{L^\infty (\mathbb{R}^N)}= +\infty. \] A point \(a\in \mathbb{R}^N\) is called a blow-up point if \(|u(x,t) |\to+ \infty\) as \((x,t) \to(a,T)\). The blow-up set \(S\) is the set of all blow-up points.
The main result states that if some nondegeneracy condition is satisfied and \(S\) is continuous, then it is a \(C^1\) manifold.

MSC:

35K55 Nonlinear parabolic equations
35K15 Initial value problems for second-order parabolic equations
35K05 Heat equation

References:

[1] Ball, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford (Ser. 2), 28, 112, 473-486 (1977) · Zbl 0377.35037
[2] Bernoff, A. J.; Bertozzi, A. L.; Witelski, T. P., Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Statist. Phys., 93, 3-4, 725-776 (1998) · Zbl 0951.74007
[3] M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Preprint; M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Preprint
[4] Brenner, M. P.; Constantin, P.; Kadanoff, L. P.; Schenkel, A.; Venkataramani, S. C., Diffusion, attraction and collapse, Nonlinearity, 12, 4, 1071-1098 (1999) · Zbl 0942.35018
[5] Bricmont, J.; Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 2, 539-575 (1994) · Zbl 0857.35018
[6] Chapman, S. J.; Hunton, B. J.; Ockendon, J. R., Vortices and boundaries, Quart. Appl. Math., 56, 3, 507-519 (1998) · Zbl 0958.76014
[7] Deng, K.; Levine, H. A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. (2000) · Zbl 0942.35025
[8] Fermanian Kammerer, C.; Merle, F.; Zaag, H., Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Annalen, 317, 2, 195-237 (2000) · Zbl 0971.35038
[9] Fermanian Kammerer, C.; Zaag, H., Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation, Nonlinearity, 13, 4, 1189-1216 (2000) · Zbl 0954.35085
[10] Filippas, S.; Kohn, R. V., Refined asymptotics for the blowup of \(u_t\)−\( Δu =u^p \), Comm. Pure Appl. Math., 45, 7, 821-869 (1992) · Zbl 0784.35010
[11] Filippas, S.; Liu, W. X., On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 3, 313-344 (1993) · Zbl 0815.35039
[12] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t= Δu +u^{1+α} \), J. Fac. Sci. Univ. Tokyo Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[13] Giga, Y.; Kohn, R. V., Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42, 6, 845-884 (1989) · Zbl 0703.35020
[14] Herrero, M. A.; Velázquez, J. J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 2, 131-189 (1993) · Zbl 0813.35007
[15] Kato, T., Perturbation Theory for Linear Operators (1995), Springer: Springer Berlin, Reprint of the 1980 edition · Zbl 0836.47009
[16] Levine, H. A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(Pu}_t \)=−\(Au}+F(u)\), Arch. Rational Mech. Anal., 51, 371-386 (1973) · Zbl 0278.35052
[17] Merle, F., Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45, 3, 263-300 (1992) · Zbl 0785.35012
[18] Merle, F.; Zaag, H., Reconnection of vortex with the boundary and finite time quenching, Nonlinearity, 10, 6, 1497-1550 (1997) · Zbl 0910.35020
[19] Merle, F.; Zaag, H., Stability of the blow-up profile for equations of the type \(u_t= Δu +|u|^{p−1}u\), Duke Math. J., 86, 1, 143-195 (1997) · Zbl 0872.35049
[20] Merle, F.; Zaag, H., Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51, 2, 139-196 (1998) · Zbl 0899.35044
[21] Merle, F.; Zaag, H., A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Annalen, 316, 1, 103-137 (2000) · Zbl 0939.35086
[22] F. Oustry, M.L. Overton, Variational analysis of the total projection for symmetric matrices, 2000; F. Oustry, M.L. Overton, Variational analysis of the total projection for symmetric matrices, 2000
[23] Soner, H. M.; Souganidis, P. E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Comm. Partial Differential Equations, 18, 5-6, 859-894 (1993) · Zbl 0804.53006
[24] Velázquez, J. J.L., Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations, 17, 9-10, 1567-1596 (1992) · Zbl 0813.35009
[25] Velázquez, J. J.L., Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., 338, 1, 441-464 (1993) · Zbl 0803.35015
[26] Velázquez, J. J.L., Estimates on the \((n\)−1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42, 2, 445-476 (1993) · Zbl 0802.35073
[27] H. Zaag, One-dimensional behavior of singular \(N\); H. Zaag, One-dimensional behavior of singular \(N\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.