zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The application of bifurcation method to a higher-order KdV equation. (English) Zbl 1012.35076
Summary: Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the higher-order KdV equation $$u_t+au^nu_x +u_{xxx}=0,$$ where $n\ge 1$ and $a\in\bbfR$. Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, explicit solitary wave solutions are obtained. Specially, some new solitary wave solutions are found for the KdV or MKDV equation.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
37K50Bifurcation problems (infinite-dimensional systems)
37K40Soliton theory, asymptotic behavior of solutions
WorldCat.org
Full Text: DOI
References:
[1] Miura, R. M.: The Korteweg--de Vries equation: a survey of results. SIAM rev. 8, 412-459 (1976) · Zbl 0333.35021
[2] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C.: Solitons and nonlinear wave equations. (1982) · Zbl 0496.35001
[3] Bona, J. L.; Dougalis, V. A.; Karakashian, O. A.; Mckinney, W. R.: Conservative, high-order numerical schemes for the generalized Korteweg--de Vries equation. Philos. trans. Roy. soc. London ser. A 351, 107-164 (1995) · Zbl 0824.65095
[4] Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. trans. Roy. soc. London ser. A 289, 373-404 (1978) · Zbl 0384.65049
[5] Chow, S. N.; Hale, J. K.: Methods of bifurcation theory. (1982) · Zbl 0487.47039
[6] Guckenheimer, J.; Holmes, P.: Dynamical systems and bifurcations of vector fields. (1983) · Zbl 0515.34001
[7] Dey, B.: K--dv like equations with domain wall solutions and their Hamiltonians. Solitons, Springer ser. Nonlinear dynamics, 188-194 (1988)
[8] Dey, B.: Domain wall solutions of KdV like equations with higher order nonlinearity. J. phys. A 19, L9-L12 (1986) · Zbl 0624.35070
[9] Jr., G. L. Lamb: Elements of soliton theory. (1980)