Sifi, M.; Soltani, F. Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line. (English) Zbl 1012.46033 J. Math. Anal. Appl. 270, No. 1, 92-106 (2002). The ordinary Fock space is the Hilbert space \(F\) of entire functions \(f(z)= \sum^\infty_{n=0} a_nz^n\), \(g(z)= \sum^\infty_{n=0} c_nz^n\) with inner product \[ (f,g)= \sum^\infty_{n=0} a_n\overline c_nn! \] The present paper studies a generalized Fock space \(F_\alpha\) for \(\alpha> -1/2\) in which the inner product is \[ (f,g)_\alpha= \sum^\infty_{n=0} a_n\overline c_nb_n (\alpha), \] where \(b_n\) is a quotient of gamma functions. The authors show that the Dunkl operator \[ (\Lambda_\alpha f)(z)={d\over dz}f(z) +{2\alpha+ 1\over z} \bigl(f(z)- f(-z)\bigr)/2 \] defines a reproducing kernel \(K_\alpha(w,z)\) in \(F_\alpha\) such that \[ \bigl(f(z), K_\alpha(w,z) \bigr)_\alpha= f(w). \] Among other results, they show that \((f,f)\leq (f,f)_\alpha\) so that \(F_\alpha\) is a subspace of \(F\). They study the multiplication operator \(Q\) on \(F_\alpha\) defined by \((Qf)(z)= zf(z)\) and show that \((\Lambda_\alpha f,g)_\alpha =(f, Qg)_\alpha\), so that \(\Lambda_\alpha\) and \(Q\) are adjoints of one another. This leads to various results on commutator relations and generalized Weyl relations between \(\Lambda_\alpha\) and \(Q\). Reviewer: J.V.Whittaker (Vancouver) Cited in 21 Documents MSC: 46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) 47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) 30H05 Spaces of bounded analytic functions of one complex variable Keywords:Dunkl operator; Fock space; generalized Weyl relations; chaotic transform PDF BibTeX XML Cite \textit{M. Sifi} and \textit{F. Soltani}, J. Math. Anal. Appl. 270, No. 1, 92--106 (2002; Zbl 1012.46033) Full Text: DOI References: [1] Fock, V., Verallgemeinerung und Lösung der Diracschen statistischen Gleichung, Z. Phys., 49, 339-357 (1928) · JFM 54.0986.02 [2] Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math., 14, 187-214 (1961) · Zbl 0107.09102 [3] Cholewinski, F. M., Generalized Fock spaces and associated operators, SIAM J. Math. Anal., 15, 177-202 (1984) · Zbl 0596.46017 [4] Dunkl, C. F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311, 167-183 (1989) · Zbl 0652.33004 [5] Dunkl, C. F., Integral kernels with reflection group invariance, Canad. J. Math., 43, 1213-1227 (1991) · Zbl 0827.33010 [6] Baker, T. H.; Forrester, P. J., The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys., 188, 175-216 (1997) · Zbl 0903.33010 [7] Baker, T. H.; Forrester, P. J., The Calogero-Sutherland model and polynomials with prescribed symmetry, Nucl. Phys. B, 492, 682-716 (1997) · Zbl 0986.33500 [8] Lapointe, L.; Vinet, L., Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys., 178, 425-452 (1996) · Zbl 0859.35103 [9] Rösler, M., Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., 192, 519-542 (1998) · Zbl 0908.33005 [10] Rösler, M.; Voit, M., Biorthogonal polynomials associated with reflection groups and a formula of Macdonald, J. Comput. Appl. Math., 99, 337-351 (1998) · Zbl 0928.33012 [11] Watson, G. N., A Treatise on Theory of Bessel Functions (1966), Cambridge University Press · Zbl 0174.36202 [12] Erdely, A., Higher Transcendental Functions, Vol. 2 (1953), McGraw-Hill: McGraw-Hill New York [13] Roseznblum, M., Generalized Hermite polynomials and the Bose-like oscillator calculus, (Operator Theory: Advances and Applications, 73 (1994), Birkhäuser: Birkhäuser Basel), 369-396 [14] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404 (1948) · Zbl 0037.20701 [15] Fitouhi, A., Heat polynomials for a singular differential operator on (0,∞), Constr. Approx., 5, 241-270 (1989) · Zbl 0696.41027 [16] Kree, P., La Théorie des Distributions en Dimension Quelconque et l’Intégration Stochastique. La Théorie des Distributions en Dimension Quelconque et l’Intégration Stochastique, Lecture Notes in Math., 1316 (1988), Springer-Verlag, pp. 170-233 · Zbl 0648.60063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.