×

Nonparametric kernel regression subject to monotonicity constraints. (English) Zbl 1012.62030

Summary: We suggest a method for monotonizing general kernel-type estimators, for example local linear estimators and Nadaraya-Watson estimators. Attributes of our approach include the fact that it produces smooth estimates, indeed with the same smoothness as the unconstrained estimate. The method is applicable to a particularly wide range of estimator types, it can be trivially modified to render an estimator strictly monotone and it can be employed after the smoothing step has been implemented. Therefore, an experimenter may use his or her favorite kernel estimator, and favorite bandwidth selector, to construct the basic nonparametric smoother and then use our technique to render it monotone in a smooth way.
Implementation involves only an off-the-shelf programming routine. The method is based on maximizing fidelity to the conventional empirical approach, subject to monotonicity. We adjust the unconstrained estimator by tilting the empirical distribution so as to make the least possible change, in the sense of a distance measure, subject to imposing the constraint of monotonicity.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference

Software:

KernSmooth
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. Wiley, New York. · Zbl 0246.62038
[2] Bartholomew, D. J. (1959). A test of homogeneity for ordered alternatives. Biometrika 46 36-48. JSTOR: · Zbl 0090.36002
[3] Bloch, D. A. and Silverman, B. W. (1997). Monotone discriminant functions and their applications in rheumatology. J. Amer. Statist. Assoc. 92 144-153. JSTOR: · Zbl 0887.62071
[4] Bowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. Oxford Univ. Press. · Zbl 0889.62027
[5] Bowman, A. W., Jones, M. C. and Gijbels, I. (1998). Testing monotonicity of regression. J. Comput. Graph. Statist. 7 489-500.
[6] Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Statist. 26 607-616. · Zbl 0066.38503
[7] Cressie, N. A. C. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 46 440-464. JSTOR: · Zbl 0571.62017
[8] Hall, P. and Heckman, N. (2000). Testing for monotonicity of a regression mean by calibrating for linear functionals. Ann Statist. 28 20-39. · Zbl 1106.62324
[9] Hall, P. and Presnell, B. (1999). Intentionally biased bootstrap methods. J. Roy. Statist. Soc. Ser. B 61 143-158. JSTOR: · Zbl 0931.62036
[10] Fisher, N. I., Hall, P., Turlach, B. A. and Watson, G. S. (1997). On the estimation of a convex set from noisy data on its support function. J. Amer. Statist. Assoc. 92 84-91. JSTOR: · Zbl 0890.62028
[11] Friedman, J. H. and Tibshirani, R. J. (1984). The monotone smoothing of scatterplots. Technometrics 26 243-250.
[12] González-Manteiga, W., Cao, R. and Marron, J. S. (1996). Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation. J. Amer. Statist. Assoc. 91 1130-1140. JSTOR: · Zbl 0880.62045
[13] Hougaard, P. (1988). A boundary modification of kernel function smoothing, with application to insulin absorption kinetics. In Compstat Lectures 31-36. Physica, Vienna.
[14] Hougaard, P., Plum, A. and Ribel, U. (1989). Kernel function smoothing of insulin absorption kinetics. Biometrics 45 1041-1052. · Zbl 0715.62259
[15] Kelly, C. and Rice, J. (1990). Monotone smoothing with application to dose-response curves and the assessment of synergism. Biometrics 46 1071-1085.
[16] Mammen, E. (1991). Estimating a smooth regression function. Ann. Statist. 19 724-740. · Zbl 0737.62038
[17] Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restrictions. Scand. J. Statist. 26 239-252. · Zbl 0932.62051
[18] Mammen, E. and Marron, J. S. (1997). Mass centred kernel smoothers. Biometrika 84 765-777. Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (1999a). A general framework for constrained smoothing. Unpublished manuscript. Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (1999b). Monotone local polynomial smoothers. Unpublished manuscript. JSTOR: · Zbl 1090.62530
[19] Marron, J. S., Turlach, B. A. and Wand, M. P. (1997). Local polynomial smoothing under qualitative constraints. In Graph-Image-Vision (L. Billard and N. I. Fisher, eds.) 647-652. Interface Foundation of North America, Fairfax Station, VA.
[20] Mukerjee, H. (1988). Monotone nonparametric regression. Ann. Statist. 16 741-750. · Zbl 0647.62042
[21] M üller, H.-G. (1997). Density adjusted kernel smoothers for random design nonparametric regression. Statist. Probab. Lett. 36 161-172. · Zbl 0893.62026
[22] M üller, H.-G. and Song, K.-S. (1993). Identity reproducing multivariate nonparametric regression. J. Multivariate Anal. 46 237-253. · Zbl 0778.62035
[23] Patil, P., Wells, M. T. and Marron, J. S. (1994). Some heuristics of kernel based estimators of ratio functions. J. Nonparametr. Statist. 4 203-209. · Zbl 1380.62156
[24] Pearson, G. W. and Qua, F. (1993). High precision14C measurement of Irish oaks to show the natural14 variations from AD 1840-5000 BC: a correction. Radiocarbon 35 105-123. Poiner, I. R., Blaber, S. J. M., Brewer, D. T., Burridge, C. Y., Caesar, D., Connell, M., Dennis, D., Dews, G. D., Ellis, A. N., Farmer, M., Fry, G. J., Glaister, J., Gribble, N., Hill, B. J., Long, B. G., Milton, D. A., Pitcher, C. R., Proh, D., Salini, J. P.,
[25] Thomas, M. R., Toscas, P., Veronise, S., Wang, Y. G. and Wassenberg, T. J. (1997). The effects of prawn trawling in the far northern section of the Great Barrier Reef. Final report to CBRMPA and FRDC on 1991-96 research. CSIRO Division of Marine Research, Queensland Dept. Primary Industries.
[26] Ramsay, J. O. (1988). Monotone regression splines in action (with comments). Statist. Sci. 3 425-461.
[27] Ramsay, J. O. (1998). Estimating smooth monotone functions. J. Roy. Statist. Soc. Ser. B 60 365-375. JSTOR: · Zbl 0909.62041
[28] Schlee, W. (1982). Nonparametric tests of the monotony and convexity of regression. In Nonparametric Statistical Inference II (B. V. Gnedenko, M. L. Puri and I. Vincze, eds.) 823-836. North-Holland, Amsterdam. · Zbl 0525.62049
[29] Turlach, B. A. (1997). Constrained smoothing splines revisited. Technical report SSR97-008, Australian National Univ., Centre for Mathematics and Its Applications. · Zbl 1088.62055
[30] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.