×

Weak dependence beyond mixing and asymptotics for nonparametric regression. (English) Zbl 1012.62037

Summary: We consider a new concept of weak dependence, introduced by P. Doukhan and S. Louhichi [Stochastic Processes Appl. 84, No. 2, 313-342 (1999; Zbl 0996.60020)], which is more general than the classical frameworks of mixing or associated sequences. The new notion is broad enough to include many interesting examples such as very general Bernoulli shifts, Markovian models or time series bootstrap processes with discrete innovations.
Under such a weak dependence assumption, we investigate nonparametric regression which represents one (among many) important statistical estimation problem. We justify in this more general setting the “whitening by windowing principle” for nonparametric regression, saying that asymptotic properties remain in first order the same as for independent samples. The proofs borrow from previously used strategies, but precise arguments are developed under the new aspect of general weak dependence.

MSC:

62G08 Nonparametric regression and quantile regression
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60F05 Central limit and other weak theorems

Citations:

Zbl 0996.60020
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ANGO NZE, P., BÜHLMANN, P. and DOUKHAN, P. (2001). Weak dependence beyond mixing and asymptotics for nonparametric regression. Ann. Statist. 30 397-430. · Zbl 1012.62037 · doi:10.1214/aos/1021379859
[2] ANGO NZE, P. and DOUKHAN, P. (1998). Functional estimation for time series: uniform convergence properties. J. Statist. Plann. Inference 68 5-29. · Zbl 0951.62074 · doi:10.1016/S0378-3758(97)00133-X
[3] BHATTACHARYA, R. N. and RANGA RAO, R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York. · Zbl 0331.41023
[4] BICKEL, P. J. and BÜHLMANN, P. (1999). A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413-446. · Zbl 0954.62102 · doi:10.2307/3318711
[5] BÜHLMANN, P. (1997). Sieve bootstrap for time series. Bernoulli 3 123-148. · Zbl 0874.62102 · doi:10.2307/3318584
[6] BÜHLMANN, P. (2002). Bootstraps for time series. Statist. Sci. · Zbl 1013.62048
[7] COLLOMB, G. (1984). Propriétés de convergence presque complète du prédicteur à noyau. Z. Wahrsch. Verw. Gebiete 66 441-460. · Zbl 0525.62046 · doi:10.1007/BF00533708
[8] COMTET, L. (1970). Analyse combinatoire 1. Masson, Paris. · Zbl 0221.05001
[9] COULON-PRIEUR, C. and DOUKHAN, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett. 47 61-68. · Zbl 0956.60006 · doi:10.1016/S0167-7152(99)00138-8
[10] DOUKHAN, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer, New York. · Zbl 0801.60027
[11] DOUKHAN, P. and LOUHICHI, S. (1998). Functional estimation of the density of a sequence under a new weak dependence condition. C. R. Acad. Sci. Paris Sér. I Math. 327 989-992. · Zbl 0919.62029 · doi:10.1016/S0764-4442(99)80166-9
[12] DOUKHAN, P. and LOUHICHI, S. (1999). A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 313-342. · Zbl 0996.60020 · doi:10.1016/S0304-4149(99)00055-1
[13] DOUKHAN, P. and PORTAL, F. (1987). Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probab. Math. Statist. 8 117-132. · Zbl 0651.60042
[14] DUFLO, M. (1996). Algorithmes stochastiques. Math. Appl. 23. Springer, Paris. · Zbl 0849.62043
[15] ESARY, J., PROSCHAN, F. and WALKUP, D. (1967). Association of random variables, with applications. Ann. Math. Statist. 38 1466-1474. · Zbl 0183.21502 · doi:10.1214/aoms/1177698701
[16] HÄRDLE, W. and TSYBAKOV, A. (1997). Local polynomial estimators of the volatility function in nonparametric autoregression. J. Econometrics 81 223-242. · Zbl 0904.62047 · doi:10.1016/S0304-4076(97)00044-4
[17] KREISS, J.-P. (1992). Bootstrap procedures for AR()-processes. Bootstrapping and Related Techniques. Lecture Notes in Econom. and Math. Systems 376 107-113. Springer, New York.
[18] LIEBSCHER, E. (1996). Strong convergence of sums of -mixing random variables with applications to density estimation. Stochastic Process. Appl. 65 69-80. · Zbl 0885.62045 · doi:10.1016/S0304-4149(96)00096-8
[19] MASRY, E. and TJØSTHEIM, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series. Econometric Theory 11 258-289. JSTOR: · Zbl 1401.62171 · doi:10.1017/S0266466600009166
[20] MCKEAGUE, I. W. and ZHANG, M.-J. (1994). Identification of nonlinear time series from first order cumulative characteristics. Ann. Statist. 22 495-514. · Zbl 0797.62073 · doi:10.1214/aos/1176325381
[21] NEUMANN, M. H. (1998). Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations. Ann. Statist. 26 2014- 2048. · Zbl 0930.62038 · doi:10.1214/aos/1024691367
[22] NEUMANN, M. H. and KREISS, J.-P. (1998). Regression-type inference in nonparametric autoregression. Ann. Statist. 26 1570-1613. · Zbl 0935.62049 · doi:10.1214/aos/1024691254
[23] NEWMAN, C. M. (1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Inequalities in Statistics and Probability (Y. L. Tong, ed.) 127-140. · doi:10.1214/lnms/1215465639
[24] PAPARODITIS, E. and POLITIS, D. N. (2000). The local bootstrap for kernel estimators under general dependence conditions. Ann. Inst. Statist. Math. 52 139-159. · Zbl 0959.62034 · doi:10.1023/A:1004193117918
[25] PAWLAK, M. (1991). On the almost everywhere properties of the kernel regression estimate. Ann. Inst. Statist. Math. 43 311-326. · Zbl 0782.62047 · doi:10.1007/BF00118638
[26] PRAKASA RAO, B. L. S. (1983). Nonparametric Functional Estimation. Academic Press, New York. · Zbl 0542.62025
[27] RIO, E. (1996). Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields 104 255-282. · Zbl 0838.60017 · doi:10.1007/BF01247840
[28] RIO, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants. Math. Appl. 31. Springer, Paris. · Zbl 0944.60008
[29] ROBINSON P.M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185- 207. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[30] ROSENBLATT, M. (1980). Linear Processes and bispectra. J. Appl. Probab. 17 265-270. JSTOR: · Zbl 0423.60043 · doi:10.2307/3212945
[31] ROSENBLATT, M. (1991). Stochastic Curve Estimation. IMS, Hayward, CA. · Zbl 1163.62318
[32] ROUSSAS, G. G. (1991). Kernel estimates under association: strong uniform consistency. Statist. Probab. Lett. 12 393-403. · Zbl 0746.62045 · doi:10.1016/0167-7152(91)90028-P
[33] SHIBATA, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. Ann. Statist. 8 147-164. · Zbl 0425.62069 · doi:10.1214/aos/1176344897
[34] TONG, H. (1981). A note on a Markov bilinear stochastic process in discrete time. J. Time Ser. Anal. 2 279-284. · Zbl 0548.60071 · doi:10.1111/j.1467-9892.1981.tb00326.x
[35] TRAN, L. T. (1990). Recursive kernel density estimators under a weak dependence condition. Ann. Inst. Statist. Math. 42 305-329. · Zbl 0722.62028 · doi:10.1007/BF00050839
[36] TRAN, L. T. (1992). Kernel density estimation for linear processes. Stochastic Process. Appl. 41 281-296. · Zbl 0758.62022 · doi:10.1016/0304-4149(92)90128-D
[37] TRAN, L., ROUSSAS, G., YAKOWITZ, S. and TRUONG VAN, B. (1996). Fixed-design regression for linear time series. Ann. Statist. 24 975-991. · Zbl 0862.62069 · doi:10.1214/aos/1032526952
[38] TRUONG, Y. K. and STONE, C. J. (1992). Nonparametric function estimation involving time series. Ann. Statist. 20 77-97. · Zbl 0764.62038 · doi:10.1214/aos/1176348513
[39] ZHAO, L. C. and FANG, Z. (1985). Strong convergence of kernel estimates of nonparametric regression functions. Chinese Ann. Math. Ser. B 6 147-155. · Zbl 0582.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.