×

On nonparametric tests of positivity/monotonicity/convexity. (English) Zbl 1012.62048

Summary: We consider the problem of estimating the distance from an unknown signal, observed in a white-noise model, to convex cones of positive/monotone/convex functions. We show that, when the unknown function belongs to a Hölder class, the risk of estimating the \(L_r\)-distance, \(1 \leq r < \infty\), from the signal to a cone is essentially the same (up to a logarithmic factor) as that of estimating the signal itself. The same risk bounds hold for the test of positivity, monotonicity and convexity of the unknown signal. We also provide an estimate for the distance to the cone of positive functions for which risk is, by a logarithmic factor, smaller than that of the “plug-in” estimate.

MSC:

62G10 Nonparametric hypothesis testing
62G08 Nonparametric regression and quantile regression
Full Text: DOI

References:

[1] BICKEL, P. J. and RITOV, Y. (1988). Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankhy\?a Ser. A 50 381-393. · Zbl 0676.62037
[2] BIRGÉ, L. and MASSART, P. (1995). Estimation of integral functionals of a density. Ann. Statist. 23 11-29. · Zbl 0848.62022 · doi:10.1214/aos/1176324452
[3] DIACK, C. A. T. and THOMAS-AGNAN, C. (1998). A nonparametric test of the nonconvexity of regression. J. Nonparametr. Statist. 9 335-362. · Zbl 0954.62058 · doi:10.1080/10485259808832749
[4] DONOHO, D. L. and LIU, R. C. (1991). Geometrizing rates of convergence, III. Ann. Statist. 19 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115
[5] DONOHO, D. L. and NUSSBAUM, M. (1990). Minimax quadratic estimation of a quadratic functional. J. Complexity 6 290-323. · Zbl 0724.62039 · doi:10.1016/0885-064X(90)90025-9
[6] DÜMBGEN, L. and SPOKOINY, V. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124-152. · Zbl 1029.62070 · doi:10.1214/aos/996986504
[7] EFROMOVICH, S. and LOW, M. (1996). On Bickel and Ritov’s conjecture about adaptive estimation of the integral of the square of density derivative. Ann. Statist. 24 682-686. · Zbl 0859.62039 · doi:10.1214/aos/1032894459
[8] ERMAKOV, M. (1990). Minimax detection of a signal in Gaussian white noise. Theory Probab. Appl. 35 667-679. · Zbl 0744.62117 · doi:10.1137/1135098
[9] FAN, J. (1991). On the estimation of quadratic functionals. Ann. Statist. 19 1273-1294. · Zbl 0729.62076 · doi:10.1214/aos/1176348249
[10] HALL, P. and MARRON, J. S. (1987). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 109-115. · Zbl 0628.62029 · doi:10.1016/0167-7152(87)90083-6
[11] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, Berlin.
[12] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1980). Some estimation problems for stochastic differential equations. Stochastic Differential Systems. Lecture Notes Control and Inform. Sci. 25 1-12. Springer, New York.
[13] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1980). On the estimation of distribution density. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 98 61-85. · Zbl 0482.62025
[14] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1987). Estimation of linear functionals in Gaussian noise. Theory Probab. Appl. 32 30-39. · Zbl 0678.62080 · doi:10.1137/1132002
[15] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1991). Asymptotically normal families of distributions and efficient estimation. Ann. Statist. 19 1681-1724. · Zbl 0760.62043 · doi:10.1214/aos/1176348367
[16] IBRAGIMOV, I. A., NEMIROVSKI, A. and KHASMINSKI, R. Z. (1986). Some problems of nonparametric estimation in Gaussian white noise. Theory Probab. Appl. 31 391-406. · Zbl 0623.62028 · doi:10.1137/1131054
[17] INGSTER, YU. I. (1982). Minimax nonparametric detection of signals in Gaussian white noise. Problems Inform. Transmission 18 130-140. · Zbl 0499.94002
[18] INGSTER, YU. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives, I-III. Math. Methods Statist. 2 85-114, 171-189, 249-268. · Zbl 0798.62057
[19] INGSTER, YU. I. (2000). On testing a hypothesis which is close to a simple hypothesis. Theory Prob. Appl. 45 310-323. · Zbl 1043.62040 · doi:10.1137/S0040585X97978257
[20] INGSTER, YU. I. and SUSLINA, I. A. (2000). Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies. ESAIM Probab. Statist. 4 53-135. · Zbl 1110.62321 · doi:10.1051/ps:2000100
[21] KERKYACHARIAN and PICARD, D. (1996). Estimating nonquadratic functionals of a density using Haar wavelets. Ann. Statist. 24 485-507. · Zbl 0860.62033 · doi:10.1214/aos/1032894450
[22] KHASMINSKI, R. Z. and IBRAGIMOV, I. A. (1979). On the nonparametric estimation of functionals. In Proceedings of the Second Prague Symposium on Asymptotic Statistics (P. Mandl and M. Huskova, eds.) 41-51. North-Holland, Amsterdam.
[23] KOROSTELEV, A. P. (1990). On the accuracy of estimation of non-smooth functionals of regression. Theory Probab. Appl. 35 784-787. · Zbl 0744.62057
[24] KOROSTELEV, A. P. and TSYBAKOV, A. B. (1993). Minimax Theory of Image Reconstruction. Lecture Notes in Statist. 82. Springer, New York. · Zbl 0833.62039
[25] KOSHEVNIK, YU. and LEVIT, B. YA. (1976). On a nonparametric analogue of the information matrix. Theory Probab. Appl. 21 738-753.
[26] LAURENT, B. (1996). Efficient estimation of integral functionals of a density. Ann. Statist. 24 659-681. · Zbl 0859.62038 · doi:10.1214/aos/1032894458
[27] LEHMANN, E. L. (1959). Testing Statistical Hypothesis. Wiley, New York. · Zbl 0089.14102
[28] LEPSKI, O. (1999). How to improve the accuracy of estimation. Math. Methods Statist. 8 441- 486. · Zbl 1033.62032
[29] LEPSKI, O., NEMIROVSKI, A. and SPOKOINY, V. (1999). On estimation of the Lr norm of a regression function. Probab. Theory Related Fields 113 221-253. · Zbl 0921.62103 · doi:10.1007/s004409970006
[30] LEPSKIJ, O. (1993). Estimation of the maximum of a nonparametric signal to within a constant. Theory Probab. Appl. 38 152-158. · Zbl 0815.62061
[31] LEVIT, B. YA. (1974). On optimality of some statistical estimates. In Proceedings of the Prague Symposium on Asymptotic Statistics (J. Hajek, ed.) 2 215-238. Univ. Karlova, Prague. · Zbl 0351.62023
[32] LEVIT, B. YA. (1975). Efficiency of a class of nonparametric estimates. Theory Probab. Appl. 20 738-754.
[33] LEVIT, B. YA. (1978). Asymptotically efficient estimation of nonlinear functionals. Problems Inform. Transmission 14 204-209. · Zbl 0422.62034
[34] NEMIROVSKI, A. S., POLYAK, B. T. and TSYBAKOV, A. B. (1984). Signal processing by the nonparametric maximum-likelihood method. Problems Inform. Transmission 20 177- 192. · Zbl 0599.62049
[35] RUDIN, W. (1966) Real and Complex Analysis. McGraw-Hill, New York. · Zbl 0142.01701
[36] SPOKOINY, V. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477-2498. · Zbl 0898.62056 · doi:10.1214/aos/1032181163
[37] SPOKOINY, V. (1998). Adaptive and spatially adaptive testing of a nonparametric hypothesis. Math. Methods Statist. 7 245-273. · Zbl 1103.62345
[38] TECHNION CITY, HAIFA 32000 ISRAEL E-MAIL: nemirovs@ie.technion.ac.il
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.