×

Marginal models for categorical data. (English) Zbl 1012.62063

Summary: Statistical models defined by imposing restrictions on marginal distributions of contingency tables have received considerable attention recently. This paper introduces a general definition of marginal log-linear parameters and describes conditions for a marginal log-linear parameter to be a smooth parameterization of the distribution and to be variation independent. Statistical models defined by imposing affine restrictions on the marginal log-linear parameters are investigated. These models generalize ordinary log-linear and multivariate logistic models. Sufficient conditions for a log-affine marginal model to be nonempty and to be a curved exponential family are given. Standard large-sample theory is shown to apply to maximum likelihood estimation of log-affine marginal models for a variety of sampling procedures.

MSC:

62H17 Contingency tables
62J12 Generalized linear models (logistic models)
62E20 Asymptotic distribution theory in statistics

Software:

cmm
Full Text: DOI

References:

[1] AGRESTI, A. and LANG, J. B. (1993). A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika 80 527-534. JSTOR: · Zbl 0800.62750 · doi:10.1093/biomet/80.3.527
[2] AITCHISON, J. and SILVEY, S. D. (1958). Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Statist. 29 813-828. · Zbl 0092.36704 · doi:10.1214/aoms/1177706538
[3] BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, New York. · Zbl 0387.62011
[4] BECKER, M. P. (1994). Analysis of repeated categorical measurements using models for marginal distributions: an application to trends in attitudes on legalized abortion. In Sociological Methodology (P. V. Marsden, ed.). Blackwell, Oxford.
[5] BERGSMA, W. P. (1997). Marginal Models for Categorical Data. Tilburg Univ. Press. · Zbl 0881.62003
[6] COLOMBI, R. (1998). A multivariate logit model with marginal canonical association. Comm. Statist. Theory Methods 27 2953-2972. · Zbl 1063.62555 · doi:10.1080/03610929808832266
[7] COLOMBI, R. and FORCINA, A. (2001). Marginal regression models for the analysis of positive association of ordinal response variables. Biometrika 88 1007-1019. JSTOR: · Zbl 1006.62057 · doi:10.1093/biomet/88.4.1007
[8] CROON, M. A., BERGSMA, W. P. and HAGENAARS, J. A. (2000). Analyzing change in categorical variables by generalized log-linear interaction models. Sociol. Methods Res. 29 195-229.
[9] DARROCH, J. N., LAURITZEN, S. L. and SPEED, T. P. (1980). Markov fields and log-linear interaction models for contingency tables. Ann. Statist. 8 522-539. · Zbl 0444.62064 · doi:10.1214/aos/1176345006
[10] DAWID, A. P. (1980). Conditional independence for statistical operations. Ann. Statist. 8 598-617. · Zbl 0434.62006 · doi:10.1214/aos/1176345011
[11] GLONEK, G. F. V. (1996). A class of regression models for multivariate categorical responses. Biometrika 83 15-28. JSTOR: · Zbl 1006.62501 · doi:10.1093/biomet/83.1.15
[12] GLONEK, G. F. V. and MCCULLAGH, P. (1995). Multivariate logistic models. J. Roy. Statist. Soc. Ser. B 57 533-546. · Zbl 0827.62059
[13] GOODMAN, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. J. Amer. Statist. Assoc. 74 537-552. · doi:10.2307/2286971
[14] HABER, M. (1985). Maximum likelihood methods for linear and loglinear models in categorical data. Comput. Statist. Data Anal. 3 1-10. · Zbl 0586.62084 · doi:10.1016/0167-9473(85)90053-2
[15] HABERMAN, S. J. (1974). The Analysis of Frequency Data. Univ. Chicago Press. · Zbl 0325.62017
[16] KAUERMANN, G. (1997). A note on multivariate logistic models for contingency tables. Austral. J. Statist. 39 261-276. · Zbl 0897.62056 · doi:10.1111/j.1467-842X.1997.tb00691.x
[17] LANG, J. B. (1996). Maximum likelihood methods for a generalized class of log-linear models. Ann. Statist. 24 726-752. · Zbl 0859.62061 · doi:10.1214/aos/1032894462
[18] LANG, J. B. and AGRESTI, A. (1994). Simultaneously modelling joint and marginal distributions of multivariate categorical responses. J. Amer. Statist. Assoc. 89 625-632. · Zbl 0799.62063 · doi:10.2307/2290865
[19] LAURITZEN, S. L. (1996). Graphical Models. Clarendon, Oxford. · Zbl 0907.62001
[20] LIANG, K. Y., ZEGER, S. L. and QAQISH, B. (1992). Multivariate regression analyses for categorical data (with discussion). J. Roy. Statist. Soc. Ser. B 54 3-40. JSTOR: · Zbl 0775.62172
[21] MCCULLAGH, P. and NELDER, J. A. (1989). Generalized Linear Models, 2nd ed. Chapman and Hall, London. · Zbl 0744.62098
[22] MOLENBERGHS, G. and LESAFFRE, E. (1994). Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. J. Amer. Statist. Assoc. 89 633-644. · Zbl 0802.62063 · doi:10.2307/2290866
[23] RUDAS, T. and LEIMER, H. G. (1992). Analysis of contingency tables with known conditional odds ratios or known log-linear parameters. In Statistical Modelling (B. Francis, G. U. H. Seeber, P. G. M. van der Heijden and W. Jansen, eds.) 312-322. Elsevier, New York.
[24] WHITTEMORE, A. S. (1978). Collapsibility of multidimensional contingency tables. J. Roy. Statist. Soc. Ser. B 40 328-340. JSTOR: · Zbl 0413.62041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.