×

\(E\)-optimal designs for rational models. (English) Zbl 1012.62082

Summary: \(E\)-optimal and standardized-\(E\)-optimal designs for various types of rational regression models are determined. In most cases, optimal designs are found for every parameter subsystem. The design points and weights are given explicitly in terms of Bernstein-Szegő polynomials. The analysis is based on a general theorem on E-optimal designs for Chebyshev systems.

MSC:

62K05 Optimal statistical designs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Achieser, N. I. (1956). Theory of Approximation. Ungar, New York. · Zbl 0072.28403
[2] Borwein, P., Erdélyi, T. and Zhang, J. (1994). Chebyshev polynomials and Markov-Bernstein type inequalities for rational spaces. J.London Math.Soc.50 501-519. · Zbl 0815.41013
[3] Chang, F.-C. and Heiligers, B. (1996). E-optimal designs for polynomial regression without intercept. J.Statist.Plann.Inference 55 371-387. · Zbl 0866.62045
[4] Dette, H. (1993). A note on E-optimal designs for weighted polynomial regression. Ann.Statist. 21 767-771. Dette, H. (1997a). Designing experiments with respect to ‘standardized’ optimalitycriteria. J. Roy.Statist.Soc.Ser.B 59 97-110. Dette, H. (1997b). E-optimal designs for regression models with quantitative factors-a reasonable choice? Can.J.Statist.25 531-543. · Zbl 0787.62076
[5] Dette, H., Haines, L. M. and Imhof, L. (1999). Optimal designs for rational models and weighted polynomial regression. Ann.Statist.27 1272-1293. · Zbl 0957.62062
[6] DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation. Springer, New York. · Zbl 0797.41016
[7] Feller, W. (1968). An Introduction to Probability and Its Applications 1, 3rd ed. Wiley, New York. · Zbl 0155.23101
[8] Haines, L. M. (1992). Optimal design for inverse quadratic polynomials. South African Statist.J. 26 25-41. · Zbl 0763.62042
[9] He, Z., Studden, W. J. and Sun, D. (1996). Optimal designs for rational models. Ann.Statist.24 2128-2147. · Zbl 0867.62063
[10] Heiligers, B. (1994). E-optimal designs in weighted polynomial regression. Ann.Statist.22 917-929. · Zbl 0808.62065
[11] Heiligers, B. (1996). Computing E-optimal polynomial regression designs. J.Statist.Plann. Inference 55 219-233. · Zbl 1076.62539
[12] Heiligers, B. (2001). Totallypositive regression: E-optimal designs. Metrika. · Zbl 1020.62064
[13] Imhof, L. and Krafft, O. (1999). Extending design-optimalityfrom an initial model to augmented models. Metrika 49 19-26. · Zbl 0990.62063
[14] Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience, New York. · Zbl 0153.38902
[15] Krein, M. G. and Nudel’man, A. A. (1977). The Markov Moment Problem and Extremal Problems. Amer. Math. Soc., Providence, RI. · Zbl 0361.42014
[16] Melas, V. B. (2000). Analytical theory of E-optimal designs for polynomial regression. In Advances in Stochastic Simulation Methods (N. Balakrishnan, V. B. Melas and S. Ermakov, eds.) 85-115. Birkhäuser, Boston. · Zbl 0998.62062
[17] M ühlbach, G. (1996). On Hermite interpolation by Cauchy-Vandermonde systems: the Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix. J.Comput. Appl.Math.67 147-159. · Zbl 0856.41003
[18] Peherstorfer, F. (1995). Elliptic orthogonal and extremal polynomials. Proc.London Math.Soc. 70 605-624. · Zbl 0833.42012
[19] Petrushev, P. P. and Popov, V. A. (1987). Rational Approximation of Real Functions. Cambridge Univ. Press. · Zbl 0644.41010
[20] Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York. · Zbl 0834.62068
[21] Pukelsheim, F. and Studden, W. J. (1993). E-optimal designs for polynomial regression. Ann. Statist. 21 402-415. · Zbl 0787.62075
[22] Ratkowsky, D. A. (1990). Handbook of Nonlinear Regression Models. Dekker, New York. · Zbl 0705.62060
[23] Spruill, M. C. (1987). Optimal designs for interpolation. J.Statist.Plann.Inference 16 219-229. · Zbl 0634.62072
[24] Stanley, R. P. (1999). Enumerative Combinatorics 2. Cambridge Univ. Press. · Zbl 0928.05001
[25] Studden, W. J. (1968). Optimal designs on Tchebycheff points. Ann.Math.Statist.39 1435-1447. · Zbl 0174.22404
[26] Studden, W. J. and Tsay, J.-Y. (1976). Remez’s procedure for finding optimal designs. Ann.Statist. 4 1271-1279. · Zbl 0347.62057
[27] Szeg o, G. (1975). Orthogonal Polynomials, 4th ed. Amer. Math. Soc., Providence, RI. · Zbl 0305.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.