×

Spectral analysis for harmonizable processes. (English) Zbl 1012.62099

Summary: Spectral estimation of nonstationary but harmonizable processes is considered. Given a single realization of the process, periodogram-like and consistent estimators are proposed for spectral mass estimation when the spectral support of the process consists of lines. Such a process can arise in signals of a moving source from array data or multipath signals with Doppler stretch from a single receiver. Such processes also include periodically correlated (or cyclostationary) and almost periodically correlated processes as special cases.
We give detailed analysis on aliasing, bias and covariances of various estimators. It is shown that dividing a single long realization of the process into nonoverlapping subsections and then averaging periodogram-like estimates formed from each subsection will not yield meaningful results if one is estimating spectral mass with support on lines with slope not equal to 1. If the slope of a spectral support line is irrational, then spectral masses do not fold on top of each other in estimation even if the data are equally spaced. Simulation examples are given to illustrate various theoretical results.

MSC:

62M15 Inference from stochastic processes and spectral analysis
60G20 Generalized stochastic processes
62F12 Asymptotic properties of parametric estimators
62G07 Density estimation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ALEKSEEV, V. G. (1988). Estimating the spectral densities of a Gaussian periodically correlated stochastic process. Problems Inform. Transmission 24 109-115. · Zbl 0663.62047
[2] ALLEN, J. and HOBBS, S. (1992). Detecting target motion by frequency-plane smoothing. In Asilomar Conference on Signals, Systems and Computers (A. Singh, ed.) 1042-1047.
[3] BOHR, H. A. (1951). Almost Periodic Functions. Chelsea, New York. · Zbl 0045.36203
[4] CHIU, S.-T. (1986). Statistical estimation of the parameters of a moving source from array data. Ann. Statist. 14 559-578. · Zbl 0604.62095 · doi:10.1214/aos/1176349938
[5] DAHLHAUS, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[6] DANDAWATE, A. V. and GIANNAKIS, G. B. (1994). Nonparametric polyspectral estimators for kthorder (almost) cyclostationary processes. IEEE Trans. Inform. Theory 40 67-84. · Zbl 0803.94005 · doi:10.1109/18.272456
[7] DANIELL, P. J. (1946). Discussion of paper by M. S. Bartlett. J. Roy. Statist. Soc. (Suppl.) 8 88-90.
[8] DEHAY, D. and HURD, H. L. (1993). Representation and estimation for periodically and almost periodically correlated random processes. In Cyclostationarity in Communications and Signal Processing (W. A. Gardner, ed.). IEEE Press, New York. · Zbl 0839.93065
[9] FERGUSON, B. G. (1999). Time-delay estimation techniques applied to the acoustic detection of jet aircraft transits. J. Acoust. Soc. Amer. 106 255-264.
[10] GARDNER, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine 8 14-36.
[11] GARDNER, W. A. (1994). Cyclostationarity in Communications and Signal Processing. IEEE Press, New York. · Zbl 0823.00029
[12] GERR, N. and ALLEN, J. (1994a). The generalized spectrum and spectral coherence of a harmonizable time series. Digital Signal Processing 4 222-238.
[13] GERR, N. and ALLEN, J. (1994b). Time-delay estimation for harmonizable signals. Digital Signal Processing 4 49-62.
[14] GLADYSHEV, E. G. (1963). Periodically and almost periodically correlated random processes with continuous time parameters. Theory Probab. Appl. 8 173-177. · Zbl 0138.11003 · doi:10.1137/1108016
[15] HURD, H. (1989). Nonparametric time series analysis for periodically correlated processes. IEEE Trans. Inform. Theory 35 350-359. · Zbl 0672.62096 · doi:10.1109/18.32129
[16] HURD, H. and GERR, N. (1991). Graphical methods for determining the presence of periodic correlation. J. Time Ser. Anal. 12 337-350. · doi:10.1111/j.1467-9892.1991.tb00088.x
[17] JIN, Q., WONG, K. M. and LUO, Z. Q. (1995). The estimation of time delay and Doppler stretch of wideband signals. IEEE Trans. Signal Processing 43 904-916.
[18] LESKOW, J. and WERON, A. (1992). Ergodic behavior and estimation for periodically correlated processes. Statist. Probab. Lett. 15 299-304. · Zbl 0765.62081 · doi:10.1016/0167-7152(92)90166-3
[19] LII, K. S. and ROSENBLATT, M. (1998). Line spectral analysis for harmonizable processes. Proc. Nat. Acad. Sci. USA 95 4800-4803. · Zbl 0899.62118 · doi:10.1073/pnas.95.9.4800
[20] LOÈVE, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton, NJ.
[21] MALLAT, S., PAPANICOLAOU, G. and ZHANG, Z. (1998). Adaptive covariance estimation of locally stationary processes. Ann. Statist. 26 1-47. · Zbl 0949.62082 · doi:10.1214/aos/1030563977
[22] MUNK, W., WORCESTER, P. and WUNSCH, C. (1995). Ocean Acoustic Tomography. Cambridge Univ. Press.
[23] NEUMANN, M. H. and VON SACHS, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 38-76. · Zbl 0871.62081 · doi:10.1214/aos/1034276621
[24] YAGLOM, A. M. (1987). Correlation Theory of Stationary and Related Random Functions 1, 2. Springer, New York. · Zbl 0685.62078
[25] ZURBENKO, I. G. (1986). The Spectral Analysis of Time Series. North-Holland, New York.
[26] UNIVERSITY OF CALIFORNIA, RIVERSIDE RIVERSIDE, CALIFORNIA 92521 E-MAIL: ksl@gauss.ucr.edu DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CALIFORNIA 92093 E-MAIL: mrosenblatt@ucsd.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.