×

On posterior consistency of survival models. (English) Zbl 1012.62105

Summary: J.K. Ghosh and R.V. Ramamoorthi [Consistency of Bayesian inference for survival analysis with or without censoring. IMS Lect. Notes, Monogr. Ser. 27, 95-103 (1995; Zbl 0876.62021)] studied posterior consistency for survival models and showed that the posterior was consistent when the prior on the distribution of survival times was the Dirichlet process prior. We study posterior consistency of survival models with neutral to the right process priors which include Dirichlet process priors. A set of sufficient conditions for posterior consistency with neutral to the right process priors is given. Interestingly, not all the neutral to the right process priors have consistent posteriors, but most of the popular priors such as Dirichlet processes, beta processes and gamma processes have consistent posteriors. With a class of priors which includes beta processes, a necessary and sufficient condition for the consistency is also established.
An interesting counter-intuitive phenomenon is found. Suppose there are two priors centered at the true parameter value with finite variances. Surprisingly, the posterior with smaller prior variance can be inconsistent, while that with larger prior variance is consistent.

MSC:

62N02 Estimation in survival analysis and censored data
62N05 Reliability and life testing
62G20 Asymptotic properties of nonparametric inference
62G05 Nonparametric estimation

Citations:

Zbl 0876.62021
Full Text: DOI

References:

[1] Barron, A. R. (1988). The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions. Technical report, Univ. Illinois.
[2] Barron, A. R. (1989). Uniformly powerful goodness of fit tests. Ann. Statist. 17 107-124. · Zbl 0674.62032 · doi:10.1214/aos/1176347005
[3] Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 536-561. · Zbl 0980.62039 · doi:10.1214/aos/1018031206
[4] Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA. · Zbl 0174.48801
[5] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. · Zbl 0657.60069
[6] Damien, P., Laud, P. W. and Smith, A. F. M. (1996). Implementation of Bayesian nonparametric inference based on beta processes. Scand. J. Statist. 23 27-36. · Zbl 0888.62034
[7] Doksum, K. A. (1974). Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2 183-201. · Zbl 0279.60097 · doi:10.1214/aop/1176996703
[8] Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling. Ann. Statist. 22 1763-1786. · Zbl 0824.62027 · doi:10.1214/aos/1176325756
[9] Dykstra, R. L. and Laud, P. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9 356-367. · Zbl 0469.62077 · doi:10.1214/aos/1176345401
[10] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[11] Ferguson, T. S. and Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Ann. Statist. 7 163-186. · Zbl 0401.62031 · doi:10.1214/aos/1176344562
[12] Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory. Birkhäuser, Boston. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999a). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999b). Consistency issues in Bayesian nonparametrics. In Asymptotic Nonparametrics and Time Series: A Tribute to Madan Lal Puri (S. Ghosh, ed.) 639-667. Dekker, New York. · Zbl 0869.60001
[13] Ghosal, S., Ghosh, J. K. and van der Vaart (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315 · doi:10.1214/aos/1016218228
[14] Ghosh, J. K. and Ramamoorthi R. V. (1995). Consistency of Bayesian inference for survival analysis with or without censoring. In Analysis of Censored Data (H.L. Koul and J. V. Deshpande, eds.) 27 95-103. IMS, Hayward, CA. · Zbl 0876.62021 · doi:10.1214/lnms/1215452215
[15] Gikhman, I. I. and Skorokhod, A. V. (1975). Theory of Stochastic Processes II. Springer, Berlin. · Zbl 0348.60042
[16] Gill, R. D. and Johansen, S. (1990). A survey of product integration with a view toward application in survival analysis. Ann. Statist. 18 1501-1555. · Zbl 0718.60087 · doi:10.1214/aos/1176347865
[17] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18 1259-1294. · Zbl 0711.62033 · doi:10.1214/aos/1176347749
[18] Jacod, J. (1979). Calcul stochastique et problémes de martingales. Lecture Notes in Math. 714. Springer, Berlin. · Zbl 0414.60053 · doi:10.1007/BFb0064907
[19] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York. · Zbl 0635.60021
[20] Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival time data. J. Roy. Statist. Soc. Ser. B 40 214-221. JSTOR: · Zbl 0387.62030
[21] Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Ann. Statist. 27 562-588. · Zbl 0980.62078 · doi:10.1214/aos/1018031207
[22] Lo, A. Y. (1982). Bayesian nonparametric statistical inference for Poisson point processes. Z. Wahrsch. Verw. Gebiete 59 55-66. · Zbl 0482.62078 · doi:10.1007/BF00575525
[23] Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26. · Zbl 0158.17606 · doi:10.1007/BF00535479
[24] Shen, X. and Wasserman, L. (1998). Rates of convergence of posterior distributions. Technical report, Carnegie Mellon Univ. · Zbl 1041.62022
[25] Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. J. Amer. Statist. Assoc. 71 897-902. JSTOR: · Zbl 0344.62036 · doi:10.2307/2286858
[26] Tsiatis, A. A. (1981). A large sample study of Cox’s regression model. Ann. Statist. 9 93-108. · Zbl 0455.62019 · doi:10.1214/aos/1176345335
[27] Walker, S. and Muliere, P. (1997). Beta-Stacy processes and a generalization of the Pólya-urn scheme. Ann. Statist. 25 1762-1780. · Zbl 0928.62067 · doi:10.1214/aos/1031594741
[28] Wolpert, R. L. and Ickstadt K. (1998). Simulation of Lévy random fields. Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statist. 133 227-242. Springer, New York. · Zbl 0912.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.