zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags. (English) Zbl 1012.90513
Summary: The paper presents an exact procedure for a general resource-constrained project scheduling problem where multiple modes are available for the performance of the individual activities and minimum as well as maximum time lags between the different activities may be given. The objective is to determine a mode and a start time for each activity such that all constraints are observed and the project duration is minimized. Project scheduling problems of this type occur, e.g. in process industries. The solution method is a depth-first search based branch-and-bound procedure. It makes use of a branching strategy where the branching rule is selected dynamically. The solution approach is an integration approach where the modes and start times are determined simultaneously. Within an experimental performance analysis this procedure is compared with existing solution procedures.

90B35Scheduling theory, deterministic
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut
90B50Management decision making, including multiple objectives
Full Text: DOI
[1] Bartusch, M.; Möhring, R.; Radermacher, F. J.: Scheduling project networks with resource constraints and time windows. Annals of operations research 16, 201-240 (1988) · Zbl 0693.90047
[2] Brucker, P.; Knust, S.; Schoo, A.; Thiele, O.: A branch and bound algorithm for the resource-constrained project scheduling problem. European journal of operational research 107, 272-288 (1998) · Zbl 0970.90030
[3] Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. European journal of operational research 112, 3-41 (1999) · Zbl 0937.90030
[4] Carlier, J.; Pinson, E.: An algorithm for solving the jop-shop problem. Management science 35, 164-176 (1989) · Zbl 0677.90036
[5] Demeulemeester, E.; Herroelen, W.: A branch and bound procedure for the multiple resource-constrained project scheduling problem. Management science 38, 1803-1818 (1992) · Zbl 0761.90059
[6] De Reyck, B., 1998. Scheduling projects with generalized precedence relations: Exact and heuristic procedures. Dissertation, Katholieke Universiteit Leuven, Belgium
[7] De Reyck, B.; Herroelen, W.: The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European journal of operational research 119, 538-556 (1999) · Zbl 0934.90040
[8] Dorndorf, U.; Pesch, E.; Toàn, P. H.: A time-oriented branch-and-bound algorithm for project scheduling with generalised precedence constraints. Management science 46, 1365-1384 (2000) · Zbl 1232.90208
[9] Elmaghraby, S. E.: Activity networks--project planning and control by network models. (1977) · Zbl 0385.90076
[10] Franck, B., 1999. Prioritätsregelverfahren für die ressourcenbeschränkte Projektplanung mit und ohne Kalender. Doctoral Dissertation, Shaker, Aachen
[11] Franck, B., Schäfer, S., Seidel, K., 1998. Heuristiken für das multi-mode project scheduling problem. Working Paper, Institut für Wirtschaftstheorie und Operations Research, University of Karlsruhe
[12] Herroelen, W.; Demeulemeester, E.; De Reyck, B.: A classification scheme for project scheduling. Project scheduling: recent models, algorithms and applications, 1-26 (1999)
[13] Kolisch, R.: Project scheduling under resource constraints: efficient heuristics for several problem classes. (1995)
[14] Lawler, E. L.: Combinatorial optimization: networks and matroids. (1976) · Zbl 0413.90040
[15] Maniezzo, V.; Mingozzi, A.: A heuristic for the multi-mode project scheduling problem based on bender’s decomposition. Project scheduling: recent models, algorithms and applications, 179-196 (1999)
[16] Möhring, R., Stork, F., Uetz, M., 1998. Resource constrained project scheduling with time windows: A branching scheme based on dynamic release dates. Arbeitspapier 596, Fachbereich Mathematik, Technical University of Berlin
[17] Neumann, K.; Morlock, M.: Operations research. (1993) · Zbl 0778.90001
[18] Neumann, K.; Nübel, H.; Schwindt, C.: Active and stable project scheduling. Mathematical methods of operations research 52, 441-465 (2000) · Zbl 1023.90029
[19] Pascoe, T. L.: Allocation of resources C.P.M. Revue française recherche opérationnelle 38, 31-38 (1966)
[20] Schwindt, C., 1998a. Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsproblems mit planungsabhängigen Zeitfenstern. Doctoral Dissertation, Shaker, Aachen
[21] Schwindt, C., 1998b. Generation of resource-constrained project scheduling problems subject to temporal constraints. Report WIOR-543, University of Karlsruhe
[22] Słowiński, R.; Soniewicki, B.; We\ogonek glarz, J.: DSS for multiobjective project scheduling. European journal of operational research 79, 220-229 (1994) · Zbl 0815.90099
[23] Sprecher, A.: Resource-constrained project scheduling--exact methods for the multi-mode case. (1994) · Zbl 0809.90084
[24] Sprecher, A.; Drexl, A.: Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European journal of operational research 107, 431-450 (1998) · Zbl 0943.90042
[25] Sprecher, A.; Hartmann, S.; Drexl, A.: An exact algorithm for project scheduling with multiple modes. OR spektrum 19, 195-203 (1997) · Zbl 0885.90059
[26] Van Hove, J. C.; Deckro, R.: Multi-modal project scheduling with generalized precedence constraints. Proceedings of the PMS workshop, Istanbul, 137-140 (1998)