Apter, Arthur W.; Cummings, James Blowing up the power set of the least measurable. (English) Zbl 1013.03060 J. Symb. Log. 67, No. 3, 915-923 (2002). Summary: We prove some results related to the problem of blowing up the power set of the least measurable cardinal. Our forcing results improve those of the first author [Math. Log. Q. 45, 551-560 (1999; Zbl 0941.03053)] by using the optimal hypothesis. MSC: 03E55 Large cardinals 03E35 Consistency and independence results Keywords:GCH; reverse Easton forcing; inner model; blowing up the power set of the least measurable cardinal Citations:Zbl 0941.03053 × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] DOI: 10.1007/BF02782938 · Zbl 0649.03040 · doi:10.1007/BF02782938 [2] DOI: 10.1090/S0002-9947-1992-1041044-9 · doi:10.1090/S0002-9947-1992-1041044-9 [3] Identity crises and strong compactness 65 pp 1895– (2000) [4] DOI: 10.1002/malq.19990450412 · Zbl 0941.03053 · doi:10.1002/malq.19990450412 [5] DOI: 10.1017/S030500410006151X · Zbl 0539.03030 · doi:10.1017/S030500410006151X [6] DOI: 10.1016/0168-0072(89)90069-9 · Zbl 0673.03043 · doi:10.1016/0168-0072(89)90069-9 [7] Sets constructed from sequences of measures: revisited 48 pp 600– (1983) [8] DOI: 10.1016/0168-0072(94)00015-U · Zbl 0820.03033 · doi:10.1016/0168-0072(94)00015-U [9] DOI: 10.1016/S0168-0072(99)00010-X · Zbl 0949.03045 · doi:10.1016/S0168-0072(99)00010-X [10] A club of former regulars 64 pp 1– (1999) [11] Sets constructible from sequences of ultrafilters 39 pp 57– (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.