zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compact and noncompact structures in a class of nonlinearly dispersive equations. (English) Zbl 1013.35072
Summary: We study compact and noncompact dispersive structures formed by a class of nonlinear dispersive equations. We show that the focusing branches provide compactons solutions: solitons with compact support. We also show that the defocusing branches generate solitary patterns solutions. We test our work for a variety of nonlinear equations with positive and negative exponents.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
WorldCat.org
Full Text: DOI
References:
[1] Rosenau, P.; Hyman, M. J.: Compactons: solitons with finite wavelengths. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[2] Rosenau, P.: Nonlinear dispersion and compact structures. Phys. rev. Lett. 73, No. 13, 1737-1741 (1994) · Zbl 0953.35501
[3] Rosenau, P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. lett. A 230, No. 5/6, 305-318 (1997) · Zbl 1052.35511
[4] Rosenau, P.: On a class of nonlinear dispersive--dissipative interactions. Physica D 230, No. 5/6, 535-546 (1998) · Zbl 0938.35172
[5] Rosenau, P.: Compact and noncompact dispersive structures. Phys. lett. A 275, No. 3, 193-203 (2000) · Zbl 1115.35365
[6] P.J. Olver, P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (2) (1996) 1900--1906.
[7] Cooper, F.; Hyman, J.; Khare, A.: Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations. Phys. rev. E 64, No. 2, 1-5 (2001)
[8] Kivshar, Y.: Compactons in discrete lattices, nonlinear coherent struct. Phys. biol. 329, 255-258 (1994)
[9] Dinda, P. T.; Remoissenet, M.: Breather compactons in nonlinear Klein--Gordon systems. Phys. rev. E 60, No. 3, 6218-6221 (1999)
[10] Dusuel, S.; Michaux, P.; Remoissenet, M.: From kinks to compactonlike kinks. Phys. rev. E 57, No. 2, 2320-2326 (1998)
[11] Ludu, A.; Draayer, J. P.: Patterns on liquid surfaces: cnoidal waves, compactons and scaling. Physica D 123, 82-91 (1998) · Zbl 0952.76008
[12] Ismail, M. S.; Taha, T.: A numerical study of compactons. Math. comput. Simul. 47, 519-530 (1998) · Zbl 0932.65096
[13] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations. Solitons and fractals 13, No. 22, 321-330 (2002) · Zbl 1028.35131
[14] Wazwaz, A. M.: Exact specific solutions with solitary patterns for the nonlinear dispersive $K(m,n)$ equations. Solitons and fractals 13, No. 1, 161-170 (2001)
[15] Wazwaz, A. M.: General compactons solutions for the focusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Solitons and fractals 13, No. 20, 321-330 (2002) · Zbl 1028.35131
[16] Wazwaz, A. M.: A study of nonlinear dispersive equations with solitary-wave solutions having compact support. Math. comput. Simul. 56, 269-276 (2001) · Zbl 0999.65109
[17] A.M.Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein--Gordon-type equation, Appl. Math. Comput. 134 (2/3) (2003) 487--500. · Zbl 1027.35119
[18] A.M.Wazwaz, Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput. (2002), submitted for publication. · Zbl 0997.35083
[19] A.M. Wazwaz, The effect of the order of nonlinear dispersive equation on the compact and noncompact solutions, Appl. Math. Comput. (2002) submitted for publication.
[20] A.M. Wazwaz, A construction of compact and noncompact solutions for nonlinear dispersive equations of even order, Appl. Math. Comput. (2002), submitted for publication.
[21] Chertock, A.; Levy, D.: Particle methods for dispersive equations. J. comput. Phys. 171, 708-730 (2001) · Zbl 0991.65008
[22] Wazwaz, A. M.: A computational approach to soliton solutions of the Kadomtsev--petviashili equation. Appl. math. Comput. 123, No. 2, 205-217 (2001) · Zbl 1024.65098
[23] Wazwaz, A. M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Solitons and fractals 12, No. 8, 1549-1556 (2001) · Zbl 1022.35051
[24] A.M. Wazwaz, A First Course in Integral Equations, World Scientific, Singapore, 1997. · Zbl 0924.45001
[25] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994. · Zbl 0802.65122
[26] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1998) · Zbl 0671.34053