Belkhelfa, M.; Hirică, I. E.; Rosca, R.; Verstraelen, L. On Legendre curves in Riemannian and Lorentzian Sasaki spaces. (English) Zbl 1013.53016 Soochow J. Math. 28, No. 1, 81-91 (2002). A 1-dimensional integral submanifold of a contact manifold is said to be a Legendre curve. Some results on Legendre curves, obtained for the Riemannian Sasaki spaces by C. Baikoussis and D. E. Blair [Geom. Dedicata 49, 135-142 (1994; Zbl 0799.53040)] are extended now to the Lorentzian case. In particular, the 3-dimensional-Sasaki-Heisenberg spaces are involved. In the latter all biharmonic Legendre curves are classified. Reviewer: Ülo Lumiste (Tartu) Cited in 2 ReviewsCited in 12 Documents MSC: 53B30 Local differential geometry of Lorentz metrics, indefinite metrics 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) Keywords:Legendre curves; contact manifolds; Saskian structures Citations:Zbl 0799.53040 PDF BibTeX XML Cite \textit{M. Belkhelfa} et al., Soochow J. Math. 28, No. 1, 81--91 (2002; Zbl 1013.53016) OpenURL