The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. (English) Zbl 1013.60078

Summary: We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the contact process has two; this contradicts a conjecture of N. Madras and R. Schinazi [Stochastic Processes Appl. 42, No. 2, 255-267 (1992; Zbl 0763.60042)]. We show that the contact process has only one phase transition on some trees of uniformly exponential growth and bounded degree, contradicting a conjecture of R. Pemantle [Ann. Probab. 20, No. 4, 2089-2116 (1992; Zbl 0762.60098)].


60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
Full Text: DOI


[1] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482. · Zbl 0718.60109
[2] Bollobás, B. (1979). Graph Theory. Springer, New York. · Zbl 0844.05054
[3] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505. · Zbl 0662.60113
[4] Durrett, R. (1988). Lectures Notes on Particle Systems and Percolation. Wadsworth, Belmont, CA. · Zbl 0659.60129
[5] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355-378. · Zbl 0378.60106
[6] Hueter, I. and Lalley, S. (2000). Anisotropic branching random walks on homogeneous trees. Probab. Theory Related Fields 116 57-88. · Zbl 0957.60047
[7] Lalley, S. and Sellke, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657. · Zbl 0937.60093
[8] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[9] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York. · Zbl 0949.60006
[10] Liggett, T. M. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710. · Zbl 0871.60087
[11] Liggett, T. M. (1996). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519. · Zbl 0867.60092
[12] Liggett, T. M. (1999). Branching random walks on finite trees. In Perplexing Problems in Probability: Papers in Honor of Harry Kesten (M. Bramson and R. Durrett, eds.) 315-330. Birkhäuser, Boston. · Zbl 0948.60097
[13] Lyons, R. (2000). Phase transitions on nonamenable graphs. J. Math. Phys. 41 1099- 1126. · Zbl 1034.82014
[14] Lyons, R. Pemantle, R. and Peres, Y. (1996). Biased random walks on Galton-Watson trees. Probab. Theory Related Fields 106 249-264. · Zbl 0859.60076
[15] Madras, N. and Schinazi, R. (1992). Branching random walks on trees. Stochastic Process. Appl. 42 255-267. · Zbl 0763.60042
[16] Pemantle, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116. · Zbl 0762.60098
[17] Salzano, M. (1999). Infinitely many contact process transitions on a tree. J. Statist. Phys. 97 817-826. · Zbl 0953.60092
[18] Salzano, M. and Schonmann, R. H. (1997). The second lowest extremal invariant measure of the contact process. Ann. Probab. 25 1846-1871. · Zbl 0903.60085
[19] Salzano, M. and Schonmann, R. H. (1998). A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26 1251-1258. · Zbl 0937.60094
[20] Salzano, M. and Schonmann, R. H. (1999). The second lowest extremal invariant measure of the contact process II. Ann. Probab. 27 845-875. · Zbl 0946.60088
[21] Schinazi, R. Private communication.
[22] Stacey, A. M. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726. · Zbl 0878.60061
[23] Stacey, A. M. (2000). The contact process on finite trees. Probab. Theory Related Fields. · Zbl 1081.60560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.