zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimized Runge-Kutta pairs for problems with oscillating solutions. (English) Zbl 1013.65073
Summary: Three types of methods for integrating periodic initial value problems are presented. These methods are (i) phase-fitted, (ii) zero dissipation (iii) both zero dissipative and phase fitted. Some particular modifications of well-known explicit Runge-Kutta pairs of orders five and four are constructed. Numerical experiments show the efficiency of the new pairs in a wide range of oscillatory problems.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L50Mesh generation and refinement (ODE)
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
34C25Periodic solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] Butcher, J. C.: The numerical analysis of ordinary differential equations. (1987) · Zbl 0616.65072
[2] Dormand, J. R.; Prince, P. J.: A family of embedded Runge--Kutta formulae. J. comput. Appl. math. 6, 19-26 (1980) · Zbl 0448.65045
[3] E. Fehlberg, Low order classical Runge--Kutta formulas with stepsize control and their application to some heat-transfer problems, TR R-287, NASA, 1969.
[4] Gautschi, W.: Numerical methods for differential equations based on trigonometric polynomials. Numer. math. 3, 381-397 (1961) · Zbl 0163.39002
[5] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I. (1993) · Zbl 0789.65048
[6] Matlab, Using Matlab, v5.3, The MathWorks Inc., Natick, MA 01760-20298, 1999.
[7] Papageorgiou, G.; Tsitouras, Ch.; Papakostas, S. N.: Runge--Kutta pairs for periodic initial value problems. Computing 51, 151-163 (1993) · Zbl 0787.65052
[8] Papakostas, S. N.; Papageorgiou, G.: A family of fifth order Runge--Kutta pairs. Math. comput. 65, 1165-1181 (1996) · Zbl 0938.65098
[9] Papakostas, S. N.; Tsitouras, Ch.: High phase-lag order Runge--Kutta and Nyström pairs. SIAM J. Sci. comput. 21, 747-763 (1999) · Zbl 0952.65054
[10] Papakostas, S. N.; Tsitouras, Ch.; Papageorgiou, G.: A general family of explicit Runge--Kutta pairs of orders 6(5). SIAM J. Numer. anal. 33, 917-936 (1996) · Zbl 0856.65085
[11] Raptis, A. D.; Simos, T. E.: A four-step phase-fitted method for the numerical integration of second order initial-value problems. Bit 31, 160-168 (1991) · Zbl 0726.65089
[12] Simos, T. E.: An exponentially fitted Runge--Kutta method for the numerical integration of initial value problems with periodic or oscillating solutions. Comput. phys. Commun. 115, 1-8 (1998) · Zbl 1001.65080
[13] Simos, T. E.; Tsitouras, Ch.: A P-stable eighth order method for the numerical integration of periodic initial value problems. J. comput. Phys. 130, 123-128 (1997) · Zbl 0870.65072
[14] Tsitouras, Ch.: A parameter study of explicit Runge--Kutta pairs of orders 6(5). Appl. math. Lett. 11, 65-69 (1998) · Zbl 1071.65541
[15] Tsitouras, Ch.: High order zero dissipative Runge--Kutta-Nyström methods. J. comput. Appl. math. 95, 157-161 (1998) · Zbl 0937.65083
[16] Tsitouras, Ch.: High algebraic order, high dissipation order Runge--Kutta methods. Comput. math. Appl. 36, 31-36 (1999) · Zbl 0942.65079
[17] Tsitouras, Ch.; Papakostas, S. N.: Cheap error estimation for Runge--Kutta pairs. SIAM J. Sci. comput. 20, 2067-2088 (1999) · Zbl 0935.65074
[18] Tsitouras, Ch.; Simos, T. E.: High order explicit methods for the integration of periodic initial value problems. Appl. math. Comput. 95, 15-26 (1998) · Zbl 0943.65081
[19] Berghe, G. Vanden; De Meyer, H.; Van Daele, M.; Van Hecke, T.: Exponentially-fitted explicit Runge--Kutta methods. Comput. phys. Comm. 123, 7-15 (1999) · Zbl 0948.65066
[20] Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge--Kutta (--Nyström) methods with reduced phase-errors for computing oscillating solutions. SIAM J. Numer. anal. 24, 407-442 (1987) · Zbl 0624.65058
[21] Van Dooren, R.: Stabilization of cowell’s classical finite difference methods for numerical integration. J. comput. Phys. 16, 186-192 (1974) · Zbl 0294.65042
[22] Wolfram, S.: Mathematica A system for doing mathematics by computer. (1991) · Zbl 0671.65002