×

zbMATH — the first resource for mathematics

Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies. (English) Zbl 1013.74062
Summary: We propose and study different mixed variational methods in order to approximate with finite elements unilateral problems arising in contact mechanics. The discretized unilateral conditions at the candidate contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. A priori error estimates are established, and several numerical studies corresponding to different choices of discretized unilateral conditions are achieved.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Faker Ben Belgacem, Méthodes d’éléments finis pour des inéquations variationnelles de contact unilatéral, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 9, 811 – 816 (French, with English and French summaries). · Zbl 0944.74070
[3] Faker Ben Belgacem, Patrick Hild, and Patrick Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Math. Models Methods Appl. Sci. 9 (1999), no. 2, 287 – 303. · Zbl 0940.74056
[4] C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989 – 1991) Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13 – 51. · Zbl 0797.65094
[5] Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431 – 443. · Zbl 0369.65030
[6] Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. II. Mixed methods, Numer. Math. 31 (1978/79), no. 1, 1 – 16. · Zbl 0427.65077
[7] M. D. Canon and C. D. Cullum, A tight upper bound on the rate of convergence of Frank-Wolfe algorithm, SIAM J. Control 6 (1968), 509 – 516. M. D. Canon and C. D. Cullum, A tight upper bound on the rate of convergence of the Frank-Wolfe algorithm, SIAM J. Control 6 (1968), 509 – 516. · Zbl 0186.24002
[8] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[9] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (French). Travaux et Recherches Mathématiques, No. 21. · Zbl 0298.73001
[10] M. Frank and P. Wolfe, An algorithm for quadratic programming. Naval Res. Logist. 3 (1956), 95-110.
[11] J. Haslinger, I. Hlavácek and J. Necas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, Eds. P. G. Ciarlet and J. L. Lions, North Holland, 313-485, 1996. CMP 97:05
[12] Patrick Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact, Comput. Methods Appl. Mech. Engrg. 184 (2000), no. 1, 99 – 123. · Zbl 1009.74062
[13] Patrick Hild, À propos d’approximation par éléments finis optimale pour les problèmes de contact unilatéral, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 10, 1233 – 1236 (French, with English and French summaries). · Zbl 0914.73060
[14] N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol. 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. · Zbl 0685.73002
[15] David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. · Zbl 0457.35001
[16] Patrick Le Tallec and Taoufik Sassi, Domain decomposition with nonmatching grids: augmented Lagrangian approach, Math. Comp. 64 (1995), no. 212, 1367 – 1396. · Zbl 0849.65087
[17] K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems, East-West J. Numer. Math. 7 (1999), no. 1, 23 – 30. · Zbl 0923.73061
[18] Frank Natterer, Optimale \?\(_{2}\)-Konvergenz finiter Elemente bei Variationsungleichungen, Finite Elemente (Tagung, Inst. Angew. Math., Univ. Bonn, Bonn, 1975), Inst. Angew. Math. Univ. Bonn, Bonn, 1976, pp. 1 – 12. Bonn. Math. Schrift., No. 89 (German, with English summary). · Zbl 0358.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.