Abbes, Ahmed Heights and discreteness (after L. Szpiro, E. Ullmo and S. Zhang). (Hauteurs et discrétude (d’après L. Szpiro, E. Ullmo et S. Zhang).) (French) Zbl 1014.11042 Séminaire Bourbaki. Volume 1996/97. Exposés 820-834. Paris: Société Mathématique de France, Astérisque. 245, 141-166, Exp. No. 825 (1997). The author surveys the proofs of E. Ullmo [Ann. Math. (2) 147, No. 1, 167–179 (1998; Zbl 0934.14013)] and S. Zhang [Ann. Math. (2) 147, 159–165 (1998; Zbl 0991.11034)] concerning the Bogomolov conjecture. The main theorem (Zhang) states: If a subvariety \(X\) of an Abelian variety \(A\) over a number field is not a translate of a sub-Abelian variety by a torsion point, there exists a constant \(\varepsilon>0\) such that the algebraic points of \(X\) of Néron-Tate height smaller than \(\varepsilon\) are not Zariski-dense in \(X\). Finally appendices on heights and on the Hilbert-Samuel arithmetic theorem are given.For the entire collection see [Zbl 0910.00034]. Reviewer: O.Ninnemann (Berlin) Cited in 5 Documents MSC: 11G35 Varieties over global fields 14G40 Arithmetic varieties and schemes; Arakelov theory; heights 14H25 Arithmetic ground fields for curves 14H40 Jacobians, Prym varieties Keywords:Bogomolov’s conjecture; Abelian variety; torsion point; Néron-Tate height Citations:Zbl 0934.14013; Zbl 0991.11034 × Cite Format Result Cite Review PDF Full Text: Numdam EuDML