A family of Noetherian rings with their finite length modules under control. (English) Zbl 1014.16014

Summary: We investigate the category \(\text{mod }\Lambda \) of finite length modules over the ring \(\Lambda=A\otimes_k\Sigma\), where \(\Sigma\) is a V-ring, i.e., a ring for which every simple module is injective, \(k\) a subfield of its centre and \(A\) an elementary \(k\)-algebra. Each simple module \(E_j\) gives rise to a quasiprogenerator \(P_j=A\otimes E_j\). By a result of K. Fuller, \(P_j\) induces a category equivalence from which we deduce that \(\text{mod }\Lambda\simeq\coprod_j\text{mod End }P_j\). As a consequence we can (1) construct for each elementary \(k\)-algebra \(A\) over a finite field \(k\) a non-Artinian Noetherian ring \(\Lambda\) such that \(\text{mod }A\simeq\text{mod }\Lambda\), (2) find twisted versions \(\Lambda\) of algebras of wild representation type such that \(\Lambda\) itself is of finite or tame representation type (in mod), (3) describe for certain rings \(\Lambda \) the minimal almost split morphisms in \(\text{mod }\Lambda\) and observe that almost all of these maps are not almost split in \(\text{Mod }\Lambda\).


16G10 Representations of associative Artinian rings
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16D90 Module categories in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
Full Text: DOI EuDML


[1] M. Auslander: A survey of existence theorems for almost split sequences. Representation theory of algebras. Proc. Symp. Durham 1985, London Math. Soc. Lecture Notes Series Vol. 116, Cambridge, 1986, pp. 81-89. · Zbl 0606.16020
[2] M. Auslander, I. Reiten and S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol. 36. Cambridge, 1995.
[3] J. H. Cozzens: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76 (1970), 75-79. · Zbl 0213.04501 · doi:10.1090/S0002-9904-1970-12370-9
[4] C. Faith: Algebra: Rings, Modules and Categories I. Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973. · Zbl 0266.16001
[5] K. R. Fuller: Density and equivalences. J. Algebra 29 (1974), 528-550. · Zbl 0306.16020
[6] K. R. Fuller: \(*\)-modules over ring extensions. Comm. Algebra 25 (1997), 2839-2860. · Zbl 0885.16019 · doi:10.1080/00927879708826026
[7] Chr. Kassel: Quantum Groups. Graduate Texts in Mathematics Vol. 155. Springer, Berlin, Heidelberg, New York, 1995.
[8] B. L. Osofsky: On twisted polynomial rings. J. Algebra 18 (1971), 597-607. · Zbl 0223.16004 · doi:10.1016/0021-8693(71)90142-6
[9] C. M. Ringel: The representation type of local algebras. Proc. Conf. Ottawa 1974, Lect. Notes Math. Vol. 488, 1975, pp. 282-305. · Zbl 0348.16013
[10] R. Wisbauer: Grundlagen der Modul- und Ringtheorie. Verlag Reinhard Fischer, München, 1988. · Zbl 0657.16001
[11] W. Zimmermann: Auslander-Reiten sequences over artinian rings. J. Algebra 119 (1988), 366-92. · Zbl 0661.16024 · doi:10.1016/0021-8693(88)90066-X
[12] W. Zimmermann: Auslander-Reiten sequences over derivation polynomial rings. J. Pure Appl. Algebra 74 (1991), 317-32. · Zbl 0742.16008 · doi:10.1016/0022-4049(91)90120-Q
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.