zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Constructing eigenfunctions of strongly coupled parabolic boundary value systems. (English) Zbl 1014.35065
Summary: This paper deals with the study of existence conditions as well as the construction of eigenfunctions of strongly coupled parabolic boundary value partial differential systems $$\align u_t(x,t) & = Au_{xx}(x,t),\quad 0< x< 1,\ t>0,\\ A_1u(0,t)+B_1u_x(0,t) & = 0\in\bbfC^m,\quad t>0,\\ A_2 u(1,t)+B_2u_x(1,t) & = 0\in\bbfC^m,\quad t>0,\endalign$$ where $u(x,t)$ lies in $\bbfC^m$ and $A_1,A_2$, $B_1,B_2$, and $A$ are matrices in $\bbfC^m$. It is an extension of [{\it L. Jódar}, {\it E. Navarro} and {\it J. A. Martin}, Proc. Edinb. Math. Soc., II. Ser. 43, No. 2, 269-293 (2000; Zbl 0949.35033)].

35P05General topics in linear spectral theory of PDE
35M10PDE of mixed type
35C10Series solutions of PDE
15A24Matrix equations and identities
Full Text: DOI
[1] Martin, J. A.; Navarro, E.; Jódar, L.: Exact and analytic-numerical solutions of strongly coupled mixed diffusion problems. Proc. edinburg math soc. 43, 1-25 (2000) · Zbl 0949.35033
[2] Campbell, S. L.: Singular systems of differential equations. (1980) · Zbl 0419.34007
[3] Axelsson, O.: Iterative solution methods. (1996) · Zbl 0845.65011
[4] Dunford, N.; Schwartz, J.: Linear operators, part I. (1957) · Zbl 0128.34803
[5] Rao, C. R.; Mitra, S. K.: Generalized inverses of matrices and its applications. (1971) · Zbl 0236.15004
[6] Saks, S.; Zygmund, A.: Analytic functions. (1971) · Zbl 0136.37301