Hong, Jooyoo; Kim, Yoonbai; Pac, Pong Youl Multivortex solutions of the abelian Chern-Simons-Higgs theory. (English) Zbl 1014.58500 Phys. Rev. Lett. 64, No. 19, 2230-2233 (1990). Summary: We have examined vortex solutions in \((2+1)\)D Chern-Simons-Higgs theory which has no usual Maxwell term. It is shown that the Bogomol’nyi-type equations can be derived for a simple sixth-order Higgs potential and corresponding general \(n\)-vortex solutions should contain \(2n\) free parameters. Various characteristics of Chern-Simons vortices are discussed briefly. Cited in 2 ReviewsCited in 179 Documents MSC: 58E50 Applications of variational problems in infinite-dimensional spaces to the sciences 35Q60 PDEs in connection with optics and electromagnetic theory 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 81T13 Yang-Mills and other gauge theories in quantum field theory PDF BibTeX XML Cite \textit{J. Hong} et al., Phys. Rev. Lett. 64, No. 19, 2230--2233 (1990; Zbl 1014.58500) Full Text: DOI OpenURL References: [1] V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 20 pp 1064– (1950) [2] A. A. Abrikosov, Sov. Phys. JETP 5 pp 1174– (1957) [3] H. B. Nielsen, Nucl. Phys. B61 pp 45– (1973) [4] F. Wilczek, Phys. Rev. Lett. 49 pp 957– (1982) [5] S. K. Paul, Phys. Lett. B 174 pp 420– (1986) [6] H. J. de Vega, Phys. Rev. Lett. 56 pp 2564– (1986) [7] C. N. Kumar, Phys. Lett. B 178 pp 395– (1986) [8] S. Deser, Mod. Phys. Lett. A 4 pp 2123– (1989) [9] S. Deser, Phys. Lett. 139B pp 371– (1984) [10] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 pp 449– (1976) [11] E. J. Weinberg, Phys. Rev. D 19 pp 3008– (1979) [12] L. Jacobs, Phys. Rev. B 19 pp 4486– (1979) [13] C. H. Taubes, Commun. Math. Phys. 72 pp 277– (1980) · Zbl 0451.35101 [14] C. H. Taubes, Commun. Math. Phys. 75 pp 207– (1980) · Zbl 0448.58029 [15] A. N. Redlich, Phys. Rev. Lett. 52 pp 18– (1984) [16] A. N. Redlich, Phys. Rev. D 29 pp 2366– (1984) [17] R. Jackiw, Phys. Rev. Lett. 64 pp 2234– (1990) · Zbl 1050.81595 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.