Engländer, János; Turaev, Dmitry A scaling limit theorem for a class of superdiffusions. (English) Zbl 1014.60080 Ann. Probab. 30, No. 2, 683-722 (2002). The authors study the superdiffusion \(X_t(dx)\) corresponding to the evolution equation \(u_t = Lu + \beta(x) u - f(x,u)\), where \(\beta\) represents the linear growth rate and \(f\) is a function with some canonical representation. Under appropriate spectral theoretical assumptions, it is proved that the limit \(X = \lim_{t \to\infty} e^{-\lambda_ct} X_t(dx)\) exists in the vague topology, where \(\lambda_c\) is the general principal eigenvalue of \(L+\beta\) on \(R^d\) and it is assumed to be positive and finite, which completes an earlier result of R. G. Pinsky [Ann. Probab. 24, No. 1, 237-267 (1996; Zbl 0854.60087)] on the expectation of the rescaled process. It is also proved that this limiting random measure \(X\) is a nonnegative nondegenerate random multiple of a deterministic measure related to the operator \(L+\beta\). When \(\beta\) is bounded above, \(X\) is finite measure-valued. In this case, under some additional assumption, the convergence is established in the weak topology. As a particular case, if \(L\) corresponds to a positive recurrent diffusion and \(\beta\) is a positive constant, then \(X = \lim_{t \to\infty} e^{-\beta t} X_t(dx)\) exists and is a nonnegative nondegenerate random multiple of the invariant measure of \(L\). Taking \(L = \Delta/2\) on \(R\) and replacing \(\beta\) by \(\delta_0\), the model is known as the super Brownian motion with a single point sauce. In this case, it is shown that a similar result holds with \(\lambda_c\) replaced by \(1/2\) and with the deterministic measure \(e^{|x|}dx\), giving an affirmative answer to a problem of J. Engländer and K. Fleischmann [Stochastic Processes Appl. 88, 37-58 (2002)]. The proofs of the above results are based on some new results on invariant curves of strongly continuous nonlinear semigroups. Reviewer: Zenghu Li (Beijing) Cited in 3 ReviewsCited in 30 Documents MSC: 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60J60 Diffusion processes 60G57 Random measures Keywords:measure-valued process; scaling limit; invariant curve Citations:Zbl 0854.60087 PDFBibTeX XMLCite \textit{J. Engländer} and \textit{D. Turaev}, Ann. Probab. 30, No. 2, 683--722 (2002; Zbl 1014.60080) Full Text: DOI References: [1] ATHREYA, K. B. and NEY, P. E. (1972). Branching Processes. Springer, Berlin. · Zbl 0259.60002 [2] BRAMSON, M., COX, J. T. and GREVEN, A. (1993). Ergodicity of critical spatial branching processes in low dimensions. Ann. Probab. 21 1946-1957. · Zbl 0788.60119 · doi:10.1214/aop/1176989006 [3] DAWSON, D. A. (1993). Measure-valued Markov processes. École d’Été de Probabilités de Saint Flour XXI. Lecture Notes in Math. 1541 1-260. Springer, Berlin. · Zbl 0799.60080 [4] DYNKIN, E. B. (1991). Branching particle systems and superprocesses. Ann. Probab. 19 1157- 1194. · Zbl 0732.60092 · doi:10.1214/aop/1176990339 [5] DYNKIN, E. B. (1993). Superprocesses and partial differential equations. Ann. Probab. 21 1185-1262. · Zbl 0806.60066 · doi:10.1214/aop/1176989116 [6] EFFENDIEV, M. A. and ZELIK, S. V. (2001). The attractor for a nonlinear reaction-diffusion system in the unbounded domain. Comm. Pure Appl. Math. 54 625-688. · Zbl 1041.35016 · doi:10.1002/cpa.1011 [7] ENGLÄNDER, J. and FLEISCHMANN, K. (2000). Extinction properties of super-Brownian motions with additional spatially dependent mass production. Stochastic Process. Appl. 88 37-58. · Zbl 1046.60075 · doi:10.1016/S0304-4149(99)00118-0 [8] ENGLÄNDER, J. and PINSKY, R. G. (1999). On the construction and support properties of measure-valued diffusions on D Rd with spatially dependent branching. Ann. Probab. 27 684-730. · Zbl 0979.60078 · doi:10.1214/aop/1022677383 [9] ENGLÄNDER, J. and WINTER, A. (2002). Strong law of large numbers for locally surviving superdiffusions. Unpublished manuscript. [10] FELLER, W. (1971). An Introduction to Probability Theory and its Applications 2, 2nd ed. Wiley, New York. · Zbl 0219.60003 [11] FRIEDMAN, A. (1964). Partial Differential Equations of Parabolic Type. Prentice Hall, New York. · Zbl 0144.34903 [12] PINSKY, R. G. (1995). Positive Harmonic Functions and Diffusion. Cambridge Univ. Press. · Zbl 0858.31001 [13] PINSKY, R. G. (1996). Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 237-267. · Zbl 0854.60087 · doi:10.1214/aop/1042644715 [14] PINSKY, R. G. (2001). Invariant probability distributions for measure-valued diffusions. Ann. Probab. 29 1476-1514. · Zbl 1108.60312 · doi:10.1214/aop/1015345759 [15] SHILNIKOV, L., SHILNIKOV, A., TURAEV, D. and CHUA, L. (1998). Methods of Qualitative Theory in Nonlinear Dynamics, Part I. World Scientific, Singapore. · Zbl 0941.34001 [16] WALTHER, H.-O. (1987). Inclination lemmas with dominated convergence.Angew. Math. Phys. 28 327-337. · Zbl 0634.58017 · doi:10.1007/BF00945417 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.