×

GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. (English) Zbl 1014.76043

From the summary: Order-one finite elements together with Galerkin least-squares (GLS) methods are used for solving a three-field Stokes problem arising from the numerical study of viscoelastic flows. Stability and convergence results are established, even when the solvent viscosity is small compared to the viscosity due to polymer chains. We propose an iterative algorithm decoupling velocity pressure and stress calculations, and derive a link with the modified elastic viscous split stress (EVSS) method. Numerical results are in agreement with theoretical predictions.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fortin, M.; Guénette, R.; Pierre, R., Numerical analysis of the modified EVSS method, Comput. Methods Appl. Mech. Engrg., 143, 79-95 (1997) · Zbl 0896.76040
[2] Guénette, R.; Fortin, M., A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech., 60, 27-52 (1995)
[3] Marchal, J. M.; Crochet, M. J., A new mixed finite element for calculating viscoelastic flows, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987) · Zbl 0637.76009
[4] Behr, M.; Franca, L.; Tezduyar, T., Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 104, 31-48 (1993) · Zbl 0771.76033
[5] Fan, Y.; Tanner, R. I.; Phan-Thien, N., Galerkin/least-square finite element methods for steady viscoelastic flows, J. Non-Newtonian Fluid Mech., 84, 233-256 (1999) · Zbl 0956.76042
[6] Fortin, M.; Fortin, A., A new approach for the FEM simulations of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989) · Zbl 0672.76010
[7] Baaijens, F. P.T.; Selen, S. H.A.; Baaijens, H. P.W.; Peters, G. W.M.; Meijer, H. E.H., Viscoelastic flow past a confined cylinder of a LDPE melt, J. Non-Newtonian Fluid Mech., 60, 173-203 (1997)
[8] Baranger, J.; Sandri, D., Finite element approximation of viscoelastic fluid flow, Numer. Math., 63, 13-27 (1992) · Zbl 0761.76032
[9] Fortin, M.; Esselaoui, D., A finite element procedure for viscoelastic flows, Int. J. Numer. Methods Fluids, 7, 1035-1052 (1987) · Zbl 0634.76007
[10] Baranger, J.; Guillopé, C.; Saut, J.-C., Mathematical analysis of differential models for viscoelastic fluids, (Piau, J.-M.; Agassant, J.-F., Rheology for Polymer Melt Processing (1996), Elsevier: Elsevier Amsterdam), 199-236
[11] Fortin, M.; Pierre, R., On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 73, 341-350 (1989) · Zbl 0692.76002
[12] Franca, L.; Stenberg, R., Error analysis of some GLS methods for elasticity equations, SIAM J. Numer. Anal., 28, 6, 1680-1697 (1991) · Zbl 0759.73055
[13] Rajagopalan, D.; Armstrong, R. C.; Brown, R. A., Finite element methods for calculation of steady, viscoelastic flow using constitutive equations with a newtonian viscosity, J. Non-Newtonian Fluid Mech., 36, 159-192 (1990) · Zbl 0709.76011
[14] Yurun, F., A comparative study of the discontinuous Galerkin and continuous SUPG finite element methods for computation of viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 141, 47-65 (1997) · Zbl 0898.76056
[15] Baaijens, F. P.T., Mixed finite element methods for viscoelastic flow analysis: A review, J. Non-Newtonian Fluid Mech., 79, 361-385 (1998) · Zbl 0957.76024
[16] Sun, J.; Phan-Thien, N.; Tanner, R. I., An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG, J. Non-Newtonian Fluid Mech., 65, 75-91 (1996)
[17] Franca, L. P.; Hughes, T. J.R., Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105, 285-298 (1993) · Zbl 0771.76037
[18] Hughes, T. J.R.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics, V. Circumventing the Babu \(š\) ka-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[19] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer: Springer Berlin · Zbl 0852.76051
[20] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer Berlin · Zbl 0788.73002
[21] Franca, L.; Frey, S.; Hughes, T. J.R., Stabilized finite element methods: Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253-276 (1992) · Zbl 0759.76040
[22] Ruas, V., Finite element methods for the three-field stokes system, RAIRO Modell. Math. Anal. Numer., 30, 489-525 (1996) · Zbl 0853.76041
[23] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1990), Academic Press: Academic Press London · Zbl 0709.73100
[24] Franca, L. P.; Hughes, J. R.; Stenberg, R., Stabilized finite element methods, (Gunzburger, M. D.; Nicolaides, R. A., Incompressible Computational Fluid Dynamics - Trends and Advances (1993), Cambridge University Press: Cambridge University Press Cambridge), 87-107 · Zbl 1189.76339
[25] Clément, P., Approximation by finite elements using local regularization, RAIRO Série Rouge, 8, 77-84 (1975) · Zbl 0368.65008
[26] Bernardi, C., Optimal finite element interpolation on curved domains, SIAM J. Numer. Anal., 26, 5, 1212-1240 (1989) · Zbl 0678.65003
[27] Pierre, R., Simple
((C^0\) approximations for the computation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 68, 205-227 (1988) · Zbl 0628.76040
[28] Harari, I.; Hughes, T. J.R., What are \(C\) and \(h\)?, Comput. Methods Appl. Mech. Engrg., 97, 157-192 (1992) · Zbl 0764.73083
[29] R. Bird, C. Curtiss, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 2, Wiley, New York, 1987; R. Bird, C. Curtiss, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 2, Wiley, New York, 1987
[30] Öttinger, H. C., Stochastic Processes in Polymeric Fluids (1996), Springer: Springer Berlin
[31] Bird, R. B.; Wiest, J. M., Constitutive equations for polymeric liquids, Ann. Rev. Fluid Mech., 27, 169-193 (1995)
[32] Laso, M.; Öttinger, H. C., Calculation of viscoelastic flow using molecular models, J. Non-Newtonian Fluid Mech., 47, 1-20 (1993) · Zbl 0774.76012
[33] Laso, M.; Picasso, M.; Öttinger, H. C., 2D time-dependent viscoelastic flow calculations using CONNFFESSIT, AIChE. J., 43, 4, 877-892 (1997)
[34] Feigl, K.; Laso, M.; Öttinger, H. C., The CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem, Macromolecules, 28, 3261-3274 (1995)
[35] Hulsen, M. A.; van Heel, A. P.G.; van den Brule, B. H.A. A., Simulation of viscoelastic flows using Brownian configuration fields, J. Non-Newtonian Fluid Mech., 70, 79-101 (1997)
[36] Bonvin, J. C.; Picasso, M., Variance reduction methods for CONNFFESSIT-like simulations, J. Non-Newtonian Fluid Mech., 84, 191-215 (1999) · Zbl 0972.76054
[37] P. Halin, G. Lielens, R. Keunings, V. Legat, The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations, Comput. Methods Appl. Mech. Engrg. 180 (1999) 345-364; P. Halin, G. Lielens, R. Keunings, V. Legat, The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations, Comput. Methods Appl. Mech. Engrg. 180 (1999) 345-364 · Zbl 0966.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.