Permanence of an SIR epidemic model with distributed time delays. (English) Zbl 1014.92033

Summary: We consider permanence of an SIR epidemic model with distributed time delays. Based on some known techniques on limit sets of differential dynamical systems, we show that, for any time delay, the SIR epidemic model is permanent if and only if an endemic equilibrium exits.


92D30 Epidemiology
34K20 Stability theory of functional-differential equations
37N25 Dynamical systems in biology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI


[1] R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature 280 (1979), 361-367.
[2] E. Beretta, V. Capasso and F. Rinaldi, Global stability results for a generalized Lotka-Volterra system with distributed delays: Applications to predator-prey and epidemic systems, J. Math. Biol. 26 (1988), 661-688. · Zbl 0716.92020 · doi:10.1007/BF00277730
[3] E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol. 33 (1995), 250-260. · Zbl 0811.92019 · doi:10.1007/BF00169563
[4] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal. 47 (2001), 4107-4115. · Zbl 1042.34585 · doi:10.1016/S0362-546X(01)00528-4
[5] G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986), 425-430. · Zbl 0603.34043 · doi:10.2307/2046588
[6] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math. 9 (1979), 31-42. · Zbl 0423.92029 · doi:10.1216/RMJ-1979-9-1-31
[7] H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations, J. Differential Equations 115 (1995), 173-192. · Zbl 0814.34064 · doi:10.1006/jdeq.1995.1011
[8] A. Halanay, Differential Equations, Stability, Oscillations (in Japanese, translated by J. Kato), Yoshioka Press, Kyoto, 1969. · Zbl 0185.23601
[9] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. · Zbl 0352.34001
[10] J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), 388-395. · Zbl 0692.34053 · doi:10.1137/0520025
[11] H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci. 7 (1976), 335-356. · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[12] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993. · Zbl 0777.34002
[13] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. 42 (2000), 931-947. · Zbl 0967.34070 · doi:10.1016/S0362-546X(99)00138-8
[14] T. Yoshizawa, Stability Theory by Liapunov’s Second Method, The Mathematical Society of Japan, Tokyo, 1966. · Zbl 0144.10802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.