×

On the normality of arithmetical constants. (English) Zbl 1015.11036

This paper shows that there is a basic mechanism underlying a principle introduced by D. H. Baily and R. E. Crandall [Exp. Math. 10, 175-190 (2001)] and formulated by them as Hypothesis A in order to explain the (conjectured) normality of the binary expansion of constants like \(\pi\) and other related numbers. The paper also points out an analogy of Hypothesis A with Furstenberg’s conjecture on invariant measures.

MSC:

11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
11A63 Radix representation; digital problems
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)

References:

[1] Adhikari S., ”Transcendental infinite sums” · Zbl 0991.11043 · doi:10.1016/S0019-3577(01)80001-X
[2] André Y., G-functions and geometry (1989) · doi:10.1007/978-3-663-14108-2
[3] André Y., J. Reine Angew. Math. 476 pp 95– (1996)
[4] Bailey D. H., Experiment. Math. 10 (2) pp 175– (2001) · Zbl 1047.11073 · doi:10.1080/10586458.2001.10504441
[5] Bailey D., Math. Comp. 66 (218) pp 903– (1997) · Zbl 0879.11073 · doi:10.1090/S0025-5718-97-00856-9
[6] Baker A., Transcendental number theory (1975) · Zbl 0297.10013 · doi:10.1017/CBO9780511565977
[7] Bombieri E., Recent progress in analytic number theory (Durham, 1979) 2 pp 1– (1981) · Zbl 0436.49031
[8] Bombieri E., Illinois J. Math. 26 (1) pp 10– (1982)
[9] Borwein J. M., Electron. J. Combin. 4 (2) pp RP5– (1997)
[10] Borwein J. M., Trans. Amer. Math. Soc. 353 (3) pp 907– (2001) · Zbl 1002.11093 · doi:10.1090/S0002-9947-00-02616-7
[11] Broadhurst D. J., Eur. Phys. J. C Part. Fields 8 (2) pp 313– (1999)
[12] Brown G., Duke Math. J. 88 (2) pp 247– (1997) · Zbl 0887.11033 · doi:10.1215/S0012-7094-97-08809-8
[13] Chudnovsky G. V., Proc. Nat. Acad. Sci. U.S.A. 81 (22) pp 7261– (1984) · Zbl 0566.10029 · doi:10.1073/pnas.81.22.7261
[14] Dwork B., An introduction to G-functions (1994) · Zbl 0830.12004
[15] Flajolet P., Experiment. Math. 7 (1) pp 15– (1998) · Zbl 0920.11061 · doi:10.1080/10586458.1998.10504356
[16] Flatto L., Ergodic Theory Dynam. Systems 14 (2) pp 237– (1994) · Zbl 0843.58106 · doi:10.1017/S0143385700007860
[17] Furstenberg H., Math. Systems Theory 1 pp 1– (1967) · Zbl 0146.28502 · doi:10.1007/BF01692494
[18] Galochstimates A. I., Mat. Sbomik 95 pp 396– (1974)
[19] Goncharov A. B., ”Multiple {\(\varsigma\)} values, Galois groups, and geometry of modular varieties” (2000)
[20] Groote Körner S. J.G., Phys. Rev. D (3) 60 (6) pp 061701– (1999) · doi:10.1103/PhysRevD.60.061701
[21] Host B., Israel J. Math. 91 (1) pp 419– (1995) · Zbl 0839.11030 · doi:10.1007/BF02761660
[22] Johnson D. S., Handbook of theoretical computer science pp 67– (1990)
[23] Johnson A. S. A., Israel J. Math. 77 (1) pp 211– (1992) · Zbl 0790.28012 · doi:10.1007/BF02808018
[24] Kuipers L., Uniform distribution of sequences (1974) · Zbl 0281.10001
[25] Lehmer D. H., Acta Arith. 27 pp 125– (1975)
[26] Margulis G., Mathematics: frontiers and perspectives pp 161– (2000)
[27] Nagell T., Abh. Math. Sem. Hamb. Univ. 1 pp 179– (1922)
[28] Nikishin E. M., Mat. Sb. 109 (3) pp 410– (1979)
[29] Parry W., Acta Math. Acad. Sci. Hungar. 11 pp 401– (1960) · Zbl 0099.28103 · doi:10.1007/BF02020954
[30] Parry W., Ergodic theory of Zd actions (Warwick, 1993–1994) pp 177– (1996)
[31] Pollington A. D., Illinois J. Math. 23 (4) pp 511– (1979)
[32] Ré nyi A., Acta Math. Acad. Sci. Hungar 8 pp 477– (1957) · Zbl 0079.08901 · doi:10.1007/BF02020331
[33] Rivoal T., C. R. Acad. Sci. Paris Sér. I Math. 331 (4) pp 267– (2000) · Zbl 0973.11072 · doi:10.1016/S0764-4442(00)01624-4
[34] Rudolph D. J., Ergodic Theory Dynam. Systems 10 (2) pp 395– (1990) · Zbl 0709.28013 · doi:10.1017/S0143385700005629
[35] Siegel C. L., Abh. Preuss. Akad. Wiss. Phys. Math. Kl. pp 41– (1929)
[36] Tijdeman, R. ”Some applications of diophantine approximation”. Proc. Millennial Number Theory Conference. [Tijdeman 2001] · Zbl 1045.11022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.